Patents by Inventor Timothy A. EBELING

Timothy A. EBELING has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11951320
    Abstract: A medical electrical lead includes a lead body, a high voltage electrode positioned on the lead body, the high voltage electrode comprising a proximal coated portion, a distal coated portion, and an uncoated portion. Additionally, the medical electrical lead includes a first low voltage electrode and a second low voltage electrode distal to the first low voltage electrode, wherein a first line passes through the first low voltage electrode and the second low voltage electrode, wherein a second line passes through the first low voltage electrode and the uncoated portion, the second line forming a first angle with the first line, and wherein a third line passes through the second low voltage electrode and the uncoated portion, the third line forming a second angle with the first line.
    Type: Grant
    Filed: December 5, 2022
    Date of Patent: April 9, 2024
    Assignee: Medtronic, Inc.
    Inventors: Mark T. Marshall, Timothy A. Ebeling
  • Publication number: 20230285756
    Abstract: An implantable medical device system is configured to detect a tachyarrhythmia from a cardiac electrical signal and start an ATP therapy delay period. The implantable medical device determines whether the cardiac electrical signal received during the ATP therapy delay period satisfies ATP delivery criteria. A therapy delivery module is controlled to cancel the delayed ATP therapy if the ATP delivery criteria are not met and deliver the delayed ATP therapy if the ATP delivery criteria are met.
    Type: Application
    Filed: May 18, 2023
    Publication date: September 14, 2023
    Inventors: Xusheng ZHANG, Yanina GRINBERG, Paul R. SOLHEIM, Troy E. JACKSON, Timothy A. EBELING, Vladimir P. NIKOLSKI
  • Publication number: 20230173279
    Abstract: A medical device is configured to determine tachyarrhythmia evidence in a cardiac signal segment received from a cardiac electrical signal sensed during a pacing escape interval started to schedule a pending cardiac pacing pulse. The medical device may delay the pending cardiac pacing pulse in response to determining the tachyarrhythmia evidence during the pacing escape interval.
    Type: Application
    Filed: November 9, 2022
    Publication date: June 8, 2023
    Inventors: Xusheng ZHANG, Saul E. GREENHUT, Yuanzhen LIU, Alfonso ARANDA HERNANDEZ, Michael W. HEINKS, Jean E. HUDSON, Timothy A. EBELING, Irving J. SANCHEZ, Scott R. HAWKINSON, Troy E. JACKSON, James VANDER HEYDEN
  • Patent number: 11666763
    Abstract: An implantable medical device system is configured to detect a tachyarrhythmia from a cardiac electrical signal and start an ATP therapy delay period. The implantable medical device determines whether the cardiac electrical signal received during the ATP therapy delay period satisfies ATP delivery criteria. A therapy delivery module is controlled to cancel the delayed ATP therapy if the ATP delivery criteria are not met and deliver the delayed ATP therapy if the ATP delivery criteria are met.
    Type: Grant
    Filed: June 8, 2020
    Date of Patent: June 6, 2023
    Assignee: Medtronic, Inc.
    Inventors: Xusheng Zhang, Yanina Grinberg, Paul R. Solheim, Troy E. Jackson, Timothy A. Ebeling, Vladimir P. Nikolski
  • Publication number: 20230148939
    Abstract: A medical device is configured to determine an amplitude metric from a cardiac signal segment sensed over a predetermined time interval and determine if the amplitude metric meets an amplitude threshold. The medical device is configured to perform a first analysis of the cardiac electrical signal segment for detecting a first arrhythmia when the amplitude metric does not meet the amplitude threshold and perform a second analysis of the cardiac electrical signal segment for detecting a second arrhythmia different than the first arrhythmia in response to the amplitude metric meeting the amplitude threshold.
    Type: Application
    Filed: October 7, 2022
    Publication date: May 18, 2023
    Inventors: Alfonso ARANDA HERNANDEZ, Timothy A. EBELING, Saul E. GREENHUT, Troy E. JACKSON, Yuanzhen LIU, Irving J. SANCHEZ, James A. VANDER HEYDEN, Xusheng ZHANG
  • Publication number: 20230129026
    Abstract: An implantable medical device system is configured to sense cardiac events in response to a cardiac electrical signal crossing a cardiac event sensing threshold. A control circuit is configured to determine a drop time interval based on a heart rate and control a sensing circuit to hold the cardiac event sensing threshold at a threshold value during the drop time interval.
    Type: Application
    Filed: December 20, 2022
    Publication date: April 27, 2023
    Inventors: Jian Cao, Gerald P. Arne, Timothy A. Ebeling, Yanina Grinberg, Michael W. Heinks, Paul R. Solheim, Xusheng Zhang
  • Publication number: 20230107061
    Abstract: A medical device is configured to receive cardiac electrical signals and sense ventricular event signals from the cardiac electrical signals. The medical device may start a validation window in response to sensing a ventricular event signal and determine if the ventricular event signal is a valid event signal or an invalid event signal based on processing of a different cardiac electrical signal than the cardiac electrical signal from which the ventricular event signal was sensed.
    Type: Application
    Filed: August 26, 2022
    Publication date: April 6, 2023
    Inventors: Saul E. GREENHUT, Alfonso ARANDA HERNANDEZ, Timothy A. EBELING, Michael W. HEINKS, Jean E. HUDSON, Troy E. JACKSON, Yuanzhen LIU, Irving J. SANCHEZ, James A. VANDER HEYDEN, Xusheng ZHANG
  • Publication number: 20230100431
    Abstract: A medical device is configured to sense first ventricular event signals from a first cardiac electrical signal and sense second ventricular event signals from a second cardiac electrical signal. The medical device is configured to determine sensed event data in response to the first ventricular event signals and the second ventricular event signals. The medical device may select one of the first cardiac electrical signal or the second cardiac electrical signal for providing input for tachyarrhythmia detection based on the sensed event data.
    Type: Application
    Filed: August 29, 2022
    Publication date: March 30, 2023
    Inventors: Yuanzhen LIU, Alfonso ARANDA HERNANDEZ, Timothy A. EBELING, Saul E. GREENHUT, Michael W. HEINKS, Jean E. HUDSON, Troy E. JACKSON, Irving J. SANCHEZ, James A. VANDER HEYDEN, Xusheng ZHANG
  • Publication number: 20230098932
    Abstract: This disclosure is directed to a curvilinear medical electrical lead. For example, a medical electrical lead includes a lead body, a high voltage electrode positioned on the lead body, the high voltage electrode comprising a proximal coated portion, a distal coated portion, and an uncoated portion. Additionally, the medical electrical lead includes a first low voltage electrode and a second low voltage electrode distal to the first low voltage electrode, wherein a first line passes through the first low voltage electrode and the second low voltage electrode, wherein a second line passes through the first low voltage electrode and the uncoated portion, the second line forming a first angle with the first line, and wherein a third line passes through the second low voltage electrode and the uncoated portion, the third line forming a second angle with the first line.
    Type: Application
    Filed: December 5, 2022
    Publication date: March 30, 2023
    Inventors: Mark T. Marshall, Timothy A. Ebeling
  • Publication number: 20230075919
    Abstract: An extra-cardiovascular implantable cardioverter defibrillator (ICD) having a high voltage therapy module is configured to control a high voltage charging circuit to charge a capacitor to a pacing voltage amplitude to deliver charge balanced pacing pulses. The capacitor is chargeable to a shock voltage amplitude that is greater than the pacing voltage amplitude. The ICD is configured to enable switching circuitry of the high voltage therapy module to discharge the capacitor to deliver a first pulse having a first polarity and a leading voltage amplitude corresponding to the pacing voltage amplitude for pacing the patient's heart via a pacing electrode vector selected from extra-cardiovascular electrodes. The high voltage therapy module delivers a second pulse after the first pulse. The second pulse has a second polarity opposite the first polarity and balances the electrical charge delivered during the first pulse.
    Type: Application
    Filed: October 27, 2022
    Publication date: March 9, 2023
    Inventors: Yanina GRINBERG, Paul D. BAKER, Lonny V. CABELKA, Craig W. DORMA, Timothy A. EBELING, Michael W. HEINKS, James VANDER HEYDEN, Joseph IPPOLITO, Joel R. LAUER, Robert T. SAWCHUK, Brian W. SCHOUSEK
  • Patent number: 11547864
    Abstract: An implantable medical device system is configured to sense cardiac events in response to a cardiac electrical signal crossing a cardiac event sensing threshold. A control circuit is configured to determine a drop time interval based on a heart rate and control a sensing circuit to hold the cardiac event sensing threshold at a threshold value during the drop time interval.
    Type: Grant
    Filed: October 12, 2020
    Date of Patent: January 10, 2023
    Assignee: Medtronic, Inc.
    Inventors: Jian Cao, Gerald P. Arne, Timothy A. Ebeling, Yanina Grinberg, Michael W. Heinks, Paul R. Solheim, Xusheng Zhang
  • Patent number: 11524169
    Abstract: An extra-cardiovascular implantable cardioverter defibrillator (ICD) having a high voltage therapy module is configured to control a high voltage charging circuit to charge a capacitor to a pacing voltage amplitude to deliver charge balanced pacing pulses. The capacitor is chargeable to a shock voltage amplitude that is greater than the pacing voltage amplitude. The ICD is configured to enable switching circuitry of the high voltage therapy module to discharge the capacitor to deliver a first pulse having a first polarity and a leading voltage amplitude corresponding to the pacing voltage amplitude for pacing the patient's heart via a pacing electrode vector selected from extra-cardiovascular electrodes. The high voltage therapy module delivers a second pulse after the first pulse. The second pulse has a second polarity opposite the first polarity and balances the electrical charge delivered during the first pulse.
    Type: Grant
    Filed: February 6, 2017
    Date of Patent: December 13, 2022
    Assignee: Medtronic, Inc.
    Inventors: Yanina Grinberg, Paul D. Baker, Lonny V. Cabelka, Craig W. Dorma, Timothy A. Ebeling, Michael W. Heinks, James Vander Heyden, Joseph Ippolito, Joel R. Lauer, Robert W. Sawchuk, Brian W. Schousek
  • Patent number: 11517756
    Abstract: This disclosure is directed to a curvilinear medical electrical lead. For example, a medical electrical lead includes a lead body, a high voltage electrode positioned on the lead body, the high voltage electrode comprising a proximal coated portion, a distal coated portion, and an uncoated portion. Additionally, the medical electrical lead includes a first low voltage electrode and a second low voltage electrode distal to the first low voltage electrode, wherein a first line passes through the first low voltage electrode and the second low voltage electrode, wherein a second line passes through the first low voltage electrode and the uncoated portion, the second line forming a first angle with the first line, and wherein a third line passes through the second low voltage electrode and the uncoated portion, the third line forming a second angle with the first line.
    Type: Grant
    Filed: July 30, 2019
    Date of Patent: December 6, 2022
    Assignee: Medtronic, Inc.
    Inventors: Mark T. Marshall, Timothy A. Ebeling
  • Publication number: 20220354561
    Abstract: A system, method and leak signal discriminator for detection of a leak or mechanical breach in a catheter shaft in the presence of an electrical interferer are disclosed. According to one aspect, a leak signal discriminator having a leak detection circuit is configured to distinguish between a leak signal arising from a leak in a catheter and an interfering signal arising from an electrical interferer.
    Type: Application
    Filed: May 10, 2021
    Publication date: November 10, 2022
    Inventors: Louis Jacob, Timothy A. Ebeling, Harold M. Dyalsingh, Trenton J. Rehberger, Craig W. Dorma
  • Publication number: 20220359056
    Abstract: A method and system for feedback control for cryo-mapping and cryoablation are disclosed. According to one aspect, a cryo-mapping and cryoablation control system includes a first control device configured to receive a target parameter value and a measured output parameter and to output an injection pressure target signal based on a first difference between the target parameter value and the measured output parameter. The system also includes a second control device configured to receive the injection pressure target signal and to output a valve control signal, the valve control signal being used to set a position of an injection pressure valve. The first control device is configured to determine a value of the injection pressure target signal to drive the first difference toward zero.
    Type: Application
    Filed: May 6, 2022
    Publication date: November 10, 2022
    Inventors: Wing-Choi Ma, Bertin Simeon, Timothy A. Ebeling, Gary P. Kivi
  • Publication number: 20220331600
    Abstract: An implantable medical device system capable of sensing cardiac electrical signals includes a sensing circuit, a therapy delivery circuit and a control circuit. The sensing circuit is configured to receive a cardiac electrical signal and sense a cardiac event in response to the signal crossing a cardiac event sensing threshold. The therapy delivery circuit is configured to deliver an electrical stimulation therapy to a patient's heart via the electrodes coupled to the implantable medical device. The control circuit is configured to control the sensing circuit to set a starting value of the cardiac event sensing threshold and hold the starting value constant for a sense delay interval. The control circuit is further configured to detect an arrhythmia based on cardiac events sensed by the sensing circuit and control the therapy delivery circuit to deliver the electrical stimulation therapy in response to detecting the arrhythmia.
    Type: Application
    Filed: July 1, 2022
    Publication date: October 20, 2022
    Inventors: Jian CAO, Timothy A. EBELING, Saul E. GREENHUT, Michael W. HEINKS, Irving J. SANCHEZ, Paul R. SOLHEIM, Xusheng ZHANG, Gerald P. ARNE
  • Patent number: 11413469
    Abstract: An implantable medical device system capable of sensing cardiac electrical signals includes a sensing circuit, a therapy delivery circuit and a control circuit. The sensing circuit is configured to receive a cardiac electrical signal and sense a cardiac event in response to the signal crossing a cardiac event sensing threshold. The therapy delivery circuit is configured to deliver an electrical stimulation therapy to a patient's heart via the electrodes coupled to the implantable medical device. The control circuit is configured to control the sensing circuit to set a starting value of the cardiac event sensing threshold and hold the starting value constant for a sense delay interval. The control circuit is further configured to detect an arrhythmia based on cardiac events sensed by the sensing circuit and control the therapy delivery circuit to deliver the electrical stimulation therapy in response to detecting the arrhythmia.
    Type: Grant
    Filed: November 26, 2019
    Date of Patent: August 16, 2022
    Assignee: Medtronic, Inc.
    Inventors: Jian Cao, Timothy A. Ebeling, Saul E. Greenhut, Michael W. Heinks, Irving J. Sanchez, Paul R. Solheim, Xusheng Zhang, Gerald P. Arne
  • Publication number: 20210038905
    Abstract: An implantable medical device system is configured to sense cardiac events in response to a cardiac electrical signal crossing a cardiac event sensing threshold. A control circuit is configured to determine a drop time interval based on a heart rate and control a sensing circuit to hold the cardiac event sensing threshold at a threshold value during the drop time interval.
    Type: Application
    Filed: October 12, 2020
    Publication date: February 11, 2021
    Inventors: Jian Cao, Gerald P. Arne, Timothy A. Ebeling, Yanina Grinberg, Michael W. Heinks, Paul R. Solheim, Xusheng Zhang
  • Publication number: 20210031048
    Abstract: This disclosure is directed to a curvilinear medical electrical lead. For example, a medical electrical lead includes a lead body, a high voltage electrode positioned on the lead body, the high voltage electrode comprising a proximal coated portion, a distal coated portion, and an uncoated portion. Additionally, the medical electrical lead includes a first low voltage electrode and a second low voltage electrode distal to the first low voltage electrode, wherein a first line passes through the first low voltage electrode and the second low voltage electrode, wherein a second line passes through the first low voltage electrode and the uncoated portion, the second line forming a first angle with the first line, and wherein a third line passes through the second low voltage electrode and the uncoated portion, the third line forming a second angle with the first line.
    Type: Application
    Filed: July 30, 2019
    Publication date: February 4, 2021
    Inventors: Mark T. Marshall, Timothy A. Ebeling
  • Patent number: 10799710
    Abstract: An implantable medical device system is configured to sense cardiac events in response to a cardiac electrical signal crossing a cardiac event sensing threshold. A control circuit is configured to determine a drop time interval based on a heart rate and control a sensing circuit to hold the cardiac event sensing threshold at a threshold value during the drop time interval.
    Type: Grant
    Filed: October 23, 2017
    Date of Patent: October 13, 2020
    Assignee: Medtronic, Inc.
    Inventors: Jian Cao, Gerald P. Arne, Timothy A. Ebeling, Yanina Grinberg, Michael W. Heinks, Paul R. Solheim, Xusheng Zhang