Patents by Inventor Timothy A. Ringeisen
Timothy A. Ringeisen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 11660100Abstract: Disclosed are radially expanding debridement tools configured to pass through an access channel present in a first tissue of a living being, expand radially, and create a void in a second tissue of the living being upon being advanced distally through the access channel and into the second tissue while being rotated, wherein the shape of the void comprises at least one step. Further disclosed are debridement systems and methods of treating tissue defects in living beings.Type: GrantFiled: January 25, 2019Date of Patent: May 30, 2023Assignee: DSM IP ASSETS B.V.Inventors: William T. Fisher, Timothy Ringeisen, Gino Bradica
-
Publication number: 20220395613Abstract: The invention provides composite materials that form a biocompatible and bioresorbable settable ceramic-forming composition, and that possesses high strength when set and other desirable mechanical properties. The composite materials may include additive materials that provide beneficial advantages in the handling and physical properties of the material. When a hydrated precursor, the composite material is capable of being injected through cannulas for placement in treatment sites. The composite material provided desirable handling properties and sets in a clinically relevant time period.Type: ApplicationFiled: June 21, 2022Publication date: December 15, 2022Inventors: Andrew FALLIS, Steven LEONHARDT, Justin KONTRA, Rakesh BATISH, Timothy RINGEISEN
-
Patent number: 11395864Abstract: The invention provides composite materials that form a biocompatible and bioresorbable settable ceramic-forming composition, and that possesses high strength when set and other desirable mechanical properties. The composite materials may include additive materials that provide beneficial advantages in the handling and physical properties of the material. When a hydrated precursor, the composite material is capable of being injected through cannulas for placement in treatment sites. The composite material provided desirable handling properties and sets in a clinically relevant time period.Type: GrantFiled: June 12, 2017Date of Patent: July 26, 2022Assignee: DSM IP ASSETS B.V.Inventors: Andrew Fallis, Steven Leonhardt, Justin Kontra, Rakesh Batish, Timothy Ringeisen
-
Publication number: 20220168478Abstract: Disclosed are nasal dressings and nasal stents comprising a collagen foam. Also disclosed are methods of making and using such nasal dressings and nasal stents. In an embodiment, a nasal dressing or nasal stent is formed by a method comprising the steps of: forming an aqueous mixture of from 5 to 25 wt % of acid-soluble collagen and from 75 to 95 wt % of collagen fibers, both based on the total solids content of the aqueous mixture, placing the aqueous mixture into a mold, freeze-drying the aqueous mixture while in the mold, thereby forming a collagen foam, and cross-linking the collagen foam.Type: ApplicationFiled: March 20, 2020Publication date: June 2, 2022Inventor: Timothy RINGEISEN
-
Patent number: 11191869Abstract: This invention includes malleable, biodegradable, fibrous compositions for application to a tissue site in order to promote or facilitate new tissue growth. One aspect of this invention is a fibrous component that provides unique mechanical and physical properties. The invention may be created by providing a vessel containing a slurry, said slurry comprising a plurality of natural or synthetic polymer fibers and at least one suspension fluid, wherein the polymer fibers are substantially evenly dispersed and randomly oriented throughout the volume of the suspension fluid; applying a force, e.g., centrifugal, to said vessel containing said slurry, whereupon said force serves to cause said polymer fibers to migrate through the suspension fluid and amass at a furthest extent of the vessel, forming a polymer material, with said polymer material comprising polymer fibers of sufficient length and sufficiently viscous, interlaced, or interlocked to retard dissociation of said polymer fibers.Type: GrantFiled: July 29, 2019Date of Patent: December 7, 2021Assignee: DSM IP ASSETS B.V.Inventors: Timothy A. Ringeisen, William Christopher Wattengel
-
Publication number: 20210077123Abstract: Disclosed are radially expanding debridement tools configured to pass through an access channel present in a first tissue of a living being, expand radially, and create a void in a second tissue of the living being upon being advanced distally through the access channel and into the second tissue while being rotated, wherein the shape of the void comprises at least one step. Further disclosed are debridement systems and methods of treating tissue defects in living beings.Type: ApplicationFiled: January 25, 2019Publication date: March 18, 2021Inventors: William T. FISHER, Timothy RINGEISEN, Gino BRADICA
-
Publication number: 20200324026Abstract: The invention provides composite materials that form a biocompatible and bioresorbable settable ceramic-forming composition, and that possesses high strength when set and other desirable mechanical properties. The composite materials may include additive materials that provide beneficial advantages in the handling and physical properties of the material. When a hydrated precursor, the composite material is capable of being injected through cannulas for placement in treatment sites. The composite material provided desirable handling properties and sets in a clinically relevant time period.Type: ApplicationFiled: June 12, 2017Publication date: October 15, 2020Inventors: Andrew FALLIS, Steven LEONHARDT, Justin KONTRA, Rakesh BATISH, Timothy RINGEISEN
-
Publication number: 20190343986Abstract: This invention includes malleable, biodegradable, fibrous compositions for application to a tissue site in order to promote or facilitate new tissue growth. One aspect of this invention is a fibrous component that provides unique mechanical and physical properties. The invention may be created by providing a vessel containing a slurry, said slurry comprising a plurality of natural or synthetic polymer fibers and at least one suspension fluid, wherein the polymer fibers are substantially evenly dispersed and randomly oriented throughout the volume of the suspension fluid; applying a force, e.g., centrifugal, to said vessel containing said slurry, whereupon said force serves to cause said polymer fibers to migrate through the suspension fluid and amass at a furthest extent of the vessel, forming a polymer material, with said polymer material comprising polymer fibers of sufficient length and sufficiently viscous, interlaced, or interlocked to retard dissociation of said polymer fibers.Type: ApplicationFiled: July 29, 2019Publication date: November 14, 2019Inventors: Timothy A. RINGEISEN, William Christopher WATTENGEL
-
Patent number: 10420857Abstract: This invention includes malleable, biodegradable, fibrous compositions for application to a tissue site in order to promote or facilitate new tissue growth. One aspect of this invention is a fibrous component that provides unique mechanical and physical properties. The invention may be created by providing a vessel containing a slurry, said slurry comprising a plurality of natural or synthetic polymer fibers and at least one suspension fluid, wherein the polymer fibers are substantially evenly dispersed and randomly oriented throughout the volume of the suspension fluid; applying a force, e.g., centrifugal, to said vessel containing said slurry, whereupon said force serves to cause said polymer fibers to migrate through the suspension fluid and amass at a furthest extent of the vessel, forming a polymer material, with said polymer material comprising polymer fibers of sufficient length and sufficiently viscous, interlaced, or interlocked to retard dissociation of said polymer fibers.Type: GrantFiled: February 28, 2017Date of Patent: September 24, 2019Assignee: DSM IP ASSETS, B.V.Inventors: Timothy A Ringeisen, William Christopher Wattengel
-
Patent number: 10016278Abstract: Tissue implants prepared for the repair of tissues, especially avascular tissues such as cartilage. One embodiment presents an electric potential capable of receiving and accumulating desirable factors or molecules from surrounding fluid when exposed to dynamic loading. In another embodiment the implant promotes tissue conduction by retarding, restricting and controlling cellular invasion through use of gradients until competent tissue forms. Further embodiments of the tissue implants may be formed into a multi-phasic device that provides deep tissue mechanical stimulus by conduction of mechanical and fluid forces experienced at the surface of the implant.Type: GrantFiled: June 30, 2009Date of Patent: July 10, 2018Assignee: DSM IP ASSETS B.V.Inventors: Gino Bradica, William Christian Wattengel, Timothy A. Ringeisen
-
Publication number: 20170368183Abstract: An implant for promoting accelerated wound healing. The implant comprises a non-flocculating fiber material, admixed with a settable fluid. The fiber component typically will have short fiber lengths, so as to avoid forming entangled masses or clumps when mixed with a fluid. In an embodiment, the fiber material is native collagen fibers and the settable fluid is an isolated blood fraction, such as platelet rich plasma and platelet poor plasma. The native collagen fiber retaining the native crosslinks of the source tissue and providing an architectural and structural scaffolding for advancing cellular infiltration. The wound healing implant will accelerate the bodies healing process, to provide better healing and less scar tissue of the wound site.Type: ApplicationFiled: August 16, 2017Publication date: December 28, 2017Inventors: Gino BRADICA, Ryan Andrew SASKA, Christopher DIJIACOMO, Timothy A. RINGEISEN
-
Patent number: 9782196Abstract: Improved coring devices suitable for articular cartilage and bone, wherein the cutting device is capable of slicing through a tough protective tangential zone, delicately separating the shock absorbing columns of cells in the radial zone of the cartilage, and finally cutting into the hard underlying bone in a manner that preserves the viability of osteochondral cells. The coring device features an annulus having a flat annular cutting edge interrupted by at least one serration having neutral cutting angles. A method for concurrently removing cartilaginous and bony tissue using an improved coring device that preserves the viability of osteochondral cells.Type: GrantFiled: February 17, 2006Date of Patent: October 10, 2017Assignee: DSM IP ASSETS B.V.Inventors: Gino Bradica, Timothy A. Ringeisen
-
Patent number: 9744123Abstract: Tissue implants prepared for the repair of tissues, especially avascular tissues such as cartilage. One embodiment presents an electric potential capable of receiving and accumulating desirable factors or molecules from surrounding fluid when exposed to dynamic loading. In another embodiment the implant promotes tissue conduction by retarding, restricting and controlling cellular invasion through use of gradients until competent tissue forms. Further embodiments of the tissue implants may be formed into a multi-phasic device that provides deep tissue mechanical stimulus by conduction of mechanical and fluid forces experienced at the surface of the implant.Type: GrantFiled: June 30, 2009Date of Patent: August 29, 2017Assignee: KENSEY NASH CORPORATIONInventors: Emme M. Castiglione-Dodd, Gino Bradioa, Ali Ebrahiml, Timothy A. Ringeisen
-
Publication number: 20170203007Abstract: This invention includes malleable, biodegradable, fibrous compositions for application to a tissue site in order to promote or facilitate new tissue growth. One aspect of this invention is a fibrous component that provides unique mechanical and physical properties. The invention may be created by providing a vessel containing a slurry, said slurry comprising a plurality of natural or synthetic polymer fibers and at least one suspension fluid, wherein the polymer fibers are substantially evenly dispersed and randomly oriented throughout the volume of the suspension fluid; applying a force, e.g., centrifugal, to said vessel containing said slurry, whereupon said force serves to cause said polymer fibers to migrate through the suspension fluid and amass at a furthest extent of the vessel, forming a polymer material, with said polymer material comprising polymer fibers of sufficient length and sufficiently viscous, interlaced, or interlocked to retard dissociation of said polymer fibers.Type: ApplicationFiled: February 28, 2017Publication date: July 20, 2017Inventors: Timothy A. RINGEISEN, William Christopher WATTENGEL
-
Patent number: 9579416Abstract: This invention includes malleable, biodegradable, fibrous compositions for application to a tissue site in order to promote or facilitate new tissue growth. One aspect of this invention is a fibrous component that provides unique mechanical and physical properties. The invention may be created by providing a vessel containing a slurry, said slurry comprising a plurality of natural or synthetic polymer fibers and at least one suspension fluid, wherein the polymer fibers are substantially evenly dispersed and randomly oriented throughout the volume of the suspension fluid; applying a force, e.g., centrifugal, to said vessel containing said slurry, whereupon said force serves to cause said polymer fibers to migrate through the suspension fluid and amass at a furthest extent of the vessel, forming a polymer material, with said polymer material comprising polymer fibers of sufficient length and sufficiently viscous, interlaced, or interlocked to retard dissociation of said polymer fibers.Type: GrantFiled: January 20, 2014Date of Patent: February 28, 2017Assignee: KENSEY NASH BVF TECHNOLOGY LLCInventors: Timothy A. Ringeisen, William Christopher Wattengel
-
Patent number: 9308076Abstract: A high strength porous biphasic polymeric reinforcement material manufactured by a compression and/or sintering process is disclosed. The material results in a network of interconnected collapsed pores, which forces thin overlapping walls and passages to be created. The network provides permeable access for fluid migration throughout the material. The strength and/or permeability are advantageous for medical devices and implants.Type: GrantFiled: March 5, 2013Date of Patent: April 12, 2016Assignee: KENSEY NASH CORPORATIONInventors: Timothy A. Ringeisen, Robert L. McDade
-
Patent number: 9283009Abstract: A bendable polymer tissue fixation device suitable to be implanted into a living body, consisting of a highly porous body, made from a polymer, the porous body having a plurality of pores, such that the device is capable of being smoothly bent, wherein the bending collapses a portion of the pores to form a radius curve, and the polymer fixation device is rigid enough to protect a tissue from shifting. Preferably, the polymer fixation device may be capable of being gradually resorbed by said living body. In one embodiment, the polymer fixation device consists of a plurality of layers distinguishable by various characteristics, such as structural or chemical properties. In another embodiment, the polymer fixation device may feature additional materials which serve to reinforce or otherwise alter the structure or physical characteristics of the device, or alternatively the additional materials serve to deliver therapies to the living being.Type: GrantFiled: March 25, 2014Date of Patent: March 15, 2016Assignee: KENSEY NASH CORPORATIONInventor: Timothy A. Ringeisen
-
Patent number: 9017417Abstract: This invention includes a subchondral bone repair system, comprising a structural component and a fluid settable component and an optional non-core component. The fluid settable component may penetrate into any pores of the structural component, and set to a solid, thereby fixing the structural component in place. The fluid settable component will penetrate interporously into the pores of the subchondral bone tissue surrounding the device, beneficially displacing any fluid to reduce edema in the affected bone region. Furthermore, the settable component, once solid is osteoconductive to promote repair and regrowth of bone in the affected region, and will also transmit mechanical force stimuli (such as compressive forces) directed through the structural component, into the adjacent bone tissue, thereby providing appropriate force stimuli necessary for appropriate tissue growth.Type: GrantFiled: May 30, 2012Date of Patent: April 28, 2015Assignee: Kensey Nash BVF Technology LLCInventors: Gino Bradica, Timothy A. Ringeisen
-
Publication number: 20140296922Abstract: A bendable polymer tissue fixation device suitable to be implanted into a living body, consisting of a highly porous body, made from a polymer, the porous body having a plurality of pores, such that the device is capable of being smoothly bent, wherein the bending collapses a portion of the pores to form a radius curve, and the polymer fixation device is rigid enough to protect a tissue from shifting. Preferably, the polymer fixation device may be capable of being gradually resorbed by said living body. In one embodiment, the polymer fixation device consists of a plurality of layers distinguishable by various characteristics, such as structural or chemical properties. In another embodiment, the polymer fixation device may feature additional materials which serve to reinforce or otherwise alter the structure or physical characteristics of the device, or alternatively the additional materials serve to deliver therapies to the living being.Type: ApplicationFiled: March 25, 2014Publication date: October 2, 2014Applicant: Kensey Nash CorporationInventor: Timothy A. Ringeisen
-
Publication number: 20140287014Abstract: This invention includes malleable, biodegradable, fibrous compositions for application to a tissue site in order to promote or facilitate new tissue growth. One aspect of this invention is a fibrous component that provides unique mechanical and physical properties. The invention may be created by providing a vessel containing a slurry, said slurry comprising a plurality of natural or synthetic polymer fibers and at least one suspension fluid, wherein the polymer fibers are substantially evenly dispersed and randomly oriented throughout the volume of the suspension fluid; applying a force, e.g., centrifugal, to said vessel containing said slurry, whereupon said force serves to cause said polymer fibers to migrate through the suspension fluid and amass at a furthest extent of the vessel, forming a polymer material, with said polymer material comprising polymer fibers of sufficient length and sufficiently viscous, interlaced, or interlocked to retard dissociation of said polymer fibers.Type: ApplicationFiled: January 20, 2014Publication date: September 25, 2014Inventors: Timothy A. Ringeisen, William Christopher Wattengel