Patents by Inventor Timothy Allen Wright
Timothy Allen Wright has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 9965094Abstract: Touchscreen testing techniques are described. In one or more implementations, a piece of conductor (e.g., metal) is positioned as proximal to a touchscreen device and the touchscreen device is tested by simulating a touch of a user. This technique may be utilized to perform a variety of different testing of a touchscreen device, such as to test latency and probabilistic latency. Additional techniques are also described including contact geometry testing techniques.Type: GrantFiled: August 4, 2011Date of Patent: May 8, 2018Assignee: MICROSOFT TECHNOLOGY LICENSING, LLCInventors: Aleksandar Uzelac, David A. Stevens, Weidong Zhao, Takahiro Shigemitsu, Briggs A. Willoughby, John Graham Pierce, Pravin Kumar Santiago, Craig S. Ranta, Timothy Allen Wright, Jeffrey C. Maier, Robert T. Perry, Stanimir Naskov Kirilov
-
Patent number: 9395845Abstract: Touchscreen testing techniques are described. In one or more implementations, a piece of conductor (e.g., metal) is positioned as proximal to a touchscreen device and the touchscreen device is tested by simulating a touch of a user. This technique may be utilized to perform a variety of different testing of a touchscreen device, such as to test latency and probabilistic latency. Additional techniques are also described including contact geometry testing techniques.Type: GrantFiled: March 19, 2015Date of Patent: July 19, 2016Assignee: Microsoft Technology Licensing, LLCInventors: Aleksandar Uzelac, David A. Stevens, Weidong Zhao, Takahiro Shigemitsu, Briggs A. Willoughby, John Graham Pierce, Pravin Kumar Santiago, Craig S. Ranta, Timothy Allen Wright, Jeffrey C. Maier, Robert T. Perry, Stanimir Naskov Kirilov, Andrey B. Batchvarov
-
Patent number: 9317147Abstract: Various embodiments provide an input test tool that promotes precision testing, flexibility and repeatability over a wide variety of functionality tests that are utilized in both touch and near-touch input scenarios. The input test tool enables a variety of degrees of motion, including both linear and rotational motion, so that a device under test can be tested utilizing a number of different linear and/or rotational input scenarios.Type: GrantFiled: October 24, 2012Date of Patent: April 19, 2016Assignee: MICROSOFT TECHNOLOGY LICENSING, LLC.Inventors: Steven Andrew Welch, Takahiro Shigemitsu, Timothy Allen Wright, Mark D. Vance, Steven E. Wittenberg
-
Publication number: 20160089792Abstract: In implementations of magnetically attached end effectors, end effectors for use with a robotic touchscreen testing apparatus are held in a rack. The apparatus is able to fix, remove, and change end effectors though movement of a movable spindle of the apparatus relative to the rack. The end effectors are attached to the spindle through magnets and aligned with the spindle through complimentary alignment features on the end effectors and the spindle.Type: ApplicationFiled: September 25, 2015Publication date: March 31, 2016Inventors: Troy William Ojalehto, Timothy Allen Wright, Robert Thomas Perry
-
Patent number: 9122729Abstract: A method that builds a chain-of-custody for archived data is disclosed to ensure the integrity and reliability of the archived data. In one implementation, by using a certified Time Stamp Authority (TSA), an indelible record of each time the archived data is touched (e.g. created, stored, retrieved, accessed, tested, moved, or transformed) is generated to build verifiable links between events to ensure the custody of the data can be audited and verified that it has remained intact throughout its lifetime. The chain-of-custody, in combination with the storage architecture that ensures archive data has not changed through various software and hardware means (e.g., multiple hash signatures to ensure integrity, timestamp authorities to pinpoint each time the archived data was touched, location information to pinpoint physical location, and coordinated chain of custody on multiple replicas of the digital artifact) validates that the archived data has not changed since it was archived.Type: GrantFiled: July 30, 2010Date of Patent: September 1, 2015Assignee: Cumulus Data LLCInventors: Joel Michael Love, Daniel Joseph Moore, Elliot Lawrence Gould, Laurence G. Walker, Timothy Allen Wright
-
Publication number: 20150193083Abstract: Touchscreen testing techniques are described. In one or more implementations, a piece of conductor (e.g., metal) is positioned as proximal to a touchscreen device and the touchscreen device is tested by simulating a touch of a user. This technique may be utilized to perform a variety of different testing of a touchscreen device, such as to test latency and probabilistic latency. Additional techniques are also described including contact geometry testing techniques.Type: ApplicationFiled: March 19, 2015Publication date: July 9, 2015Inventors: Aleksandar Uzelac, David A. Stevens, Weidong Zhao, Takahiro Shigemitsu, Briggs A. Willoughby, John Graham Pierce, Pravin Kumar Santiago, Craig S. Ranta, Timothy Allen Wright, Jeffrey C. Maier, Robert T. Perry, Stanimir Naskov Kirilov, Andrey B. Batchvarov
-
Patent number: 9030437Abstract: Touchscreen testing techniques are described. In one or more implementations, a piece of conductor (e.g., metal) is positioned as proximal to a touchscreen device and the touchscreen device is tested by simulating a touch of a user. This technique may be utilized to perform a variety of different testing of a touchscreen device, such as to test latency and probabilistic latency. Additional techniques are also described including contact geometry testing techniques.Type: GrantFiled: August 8, 2011Date of Patent: May 12, 2015Assignee: Microsoft Technology Licensing, LLCInventors: Aleksandar Uzelac, David A. Stevens, Weidong Zhao, Takahiro Shigemitsu, Briggs A. Willoughby, John Graham Pierce, Pravin Kumar Santiago, Craig S. Ranta, Timothy Allen Wright, Jeffrey C. Maier, Robert T. Perry, Stanimir Naskov Kirilov, Andrey B. Batchvarov
-
Patent number: 8725443Abstract: Touchscreen testing techniques are described. In one or more implementations, a piece of conductor (e.g., metal) is positioned as proximal to a touchscreen device and the touchscreen device is tested by simulating a touch of a user. This technique may be utilized to perform a variety of different testing of a touchscreen device, such as to test latency and probabilistic latency. Additional techniques are also described including contact geometry testing techniques.Type: GrantFiled: August 4, 2011Date of Patent: May 13, 2014Assignee: Microsoft CorporationInventors: Aleksandar Uzelac, David A. Stevens, Weidong Zhao, Takahiro Shigemitsu, Briggs A. Willoughby, John Graham Pierce, Pravin Kumar Santiago, Craig S. Ranta, Timothy Allen Wright, Jeffrey C. Maier, Robert T. Perry, Stanimir Naskov Kirilov
-
Publication number: 20140111484Abstract: Various embodiments provide an input test tool that promotes precision testing, flexibility and repeatability over a wide variety of functionality tests that are utilized in both touch and near-touch input scenarios. The input test tool enables a variety of degrees of motion, including both linear and rotational motion, so that a device under test can be tested utilizing a number of different linear and/or rotational input scenarios.Type: ApplicationFiled: October 24, 2012Publication date: April 24, 2014Applicant: MICROSOFT CORPORATIONInventors: Steven Andrew Welch, Takahiro Shigemitsu, Timothy Allen Wright, Mark D. Vance, Steven E. Wittenberg
-
Publication number: 20140111485Abstract: Various embodiments provide an input test tool that promotes precision testing, flexibility and repeatability over a wide variety of functionality tests that are utilized in both touch and near-touch input scenarios. The input test tool enables a variety of degrees of motion, including both linear and rotational motion, so that a device under test can be tested utilizing a number of different linear and/or rotational input scenarios.Type: ApplicationFiled: October 31, 2012Publication date: April 24, 2014Applicant: Microsoft CorporationInventors: Steven Andrew Welch, Takahiro Shigemitsu, Timothy Allen Wright, Mark D. Vance, Steven E. Wittenberg
-
Publication number: 20120188197Abstract: Touchscreen testing techniques are described. In one or more implementations, a piece of conductor (e.g., metal) is positioned as proximal to a touchscreen device and the touchscreen device is tested by simulating a touch of a user. This technique may be utilized to perform a variety of different testing of a touchscreen device, such as to test latency and probabilistic latency. Additional techniques are also described including contact geometry testing techniques.Type: ApplicationFiled: August 8, 2011Publication date: July 26, 2012Applicant: MICROSOFT CORPORATIONInventors: Aleksandar Uzelac, David A. Stevens, Weidong Zhao, Takahiro Shigemitsu, Briggs A. Willoughby, John Graham Pierce, Pravin Kumar Santiago, Craig S. Ranta, Timothy Allen Wright, Jeffrey C. Maier, Robert T. Perry, Stanimir Naskov Kirilov, Andrey B. Batchvarov
-
Publication number: 20120191394Abstract: Touchscreen testing techniques are described. In one or more implementations, a piece of conductor (e.g., metal) is positioned as proximal to a touchscreen device and the touchscreen device is tested by simulating a touch of a user. This technique may be utilized to perform a variety of different testing of a touchscreen device, such as to test latency and probabilistic latency. Additional techniques are also described including contact geometry testing techniques.Type: ApplicationFiled: August 4, 2011Publication date: July 26, 2012Applicant: Microsoft CorporationInventors: Aleksandar Uzelac, David A. Stevens, Weidong Zhao, Takahiro Shigemitsu, Briggs A. Willoughby, John Graham Pierce, Pravin Kumar Santiago, Craig S. Ranta, Timothy Allen Wright, Jeffrey C. Maier, Robert T. Perry, Stanimir Naskov Kirilov
-
Publication number: 20120188176Abstract: Touchscreen testing techniques are described. In one or more implementations, a piece of conductor (e.g., metal) is positioned as proximal to a touchscreen device and the touchscreen device is tested by simulating a touch of a user. This technique may be utilized to perform a variety of different testing of a touchscreen device, such as to test latency and probabilistic latency. Additional techniques are also described including contact geometry testing techniques.Type: ApplicationFiled: August 4, 2011Publication date: July 26, 2012Applicant: Microsoft CorporationInventors: Aleksandar Uzelac, David A. Stevens, Weidong Zhao, Takahiro Shigemitsu, Briggs A. Willoughby, John Graham Pierce, Pravin Kumar Santiago, Craig S. Ranta, Timothy Allen Wright, Jeffrey C. Maier, Robert T. Perry, Stanimir Naskov Kirilov
-
Publication number: 20110184910Abstract: A method that builds a chain-of-custody for archived data is disclosed to ensure the integrity and reliability of the archived data. In one implementation, by using a certified Time Stamp Authority (TSA), an indelible record of each time the archived data is touched (e.g. created, stored, retrieved, accessed, tested, moved, or transformed) is generated to build verifiable links between events to ensure the custody of the data can be audited and verified that it has remained intact throughout its lifetime. The chain-of-custody, in combination with the storage architecture that ensures archive data has not changed through various software and hardware means (e.g., multiple hash signatures to ensure integrity, timestamp authorities to pinpoint each time the archived data was touched, location information to pinpoint physical location, and coordinated chain of custody on multiple replicas of the digital artifact) validates that the archived data has not changed since it was archived.Type: ApplicationFiled: July 30, 2010Publication date: July 28, 2011Inventors: Joel Michael Love, Daniel Joseph Moore, Elliot Lawrence Gould, Laurence G. Walker, Timothy Allen Wright