Patents by Inventor Timothy Andrew Barckholtz

Timothy Andrew Barckholtz has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9343763
    Abstract: In various aspects, systems and methods are provided for integration of molten carbonate fuel cells with processes for synthesis of nitrogen-containing compounds. The molten carbonate fuel cells can be integrated with a synthesis process in various manners, including providing hydrogen for use in producing ammonia. Additionally, integration of molten carbonate fuel cells with a methanol synthesis process can facilitate further processing of vent streams or secondary product streams generated during synthesis of nitrogen-containing compounds.
    Type: Grant
    Filed: March 13, 2014
    Date of Patent: May 17, 2016
    Assignee: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Paul J. Berlowitz, Timothy Andrew Barckholtz, S. Allen Erickson, Anita S. Lee
  • Publication number: 20160075649
    Abstract: A multipurpose chemical additives (MPC) is disclosed to mitigate fouling in hydrocarbon refinery processes, such as in a heat exchanger. A method for reducing fouling of a hydrocarbon is also disclosed that includes (i) providing a crude hydrocarbon for a refining process; and (ii) adding an additive to the crude hydrocarbon.
    Type: Application
    Filed: November 24, 2015
    Publication date: March 17, 2016
    Applicant: ExxonMobil Research and Engineering Company
    Inventors: Man Kit NG, Mohsen Shahmirzadi YEGANEH, Timothy Andrew BARCKHOLTZ, Glen Barry BRONS, Hong CHENG, Geoffrey Marshall KEISER, Donna J. CROWTHER, David T. FERRUGHELLI, Clarence CHASE, Emmanuel ULYSSE, Edward Andrew LEMON
  • Publication number: 20160075648
    Abstract: A multipurpose chemical additives (MPC) is disclosed to mitigate fouling in hydrocarbon refinery processes, such as in a heat exchanger. A method for reducing fouling of a hydrocarbon is also disclosed that includes (i) providing a crude hydrocarbon for a refining process; and (ii) adding an additive to the crude hydrocarbon.
    Type: Application
    Filed: November 24, 2015
    Publication date: March 17, 2016
    Applicant: ExxonMobil Research and Engineering Company
    Inventors: Man Kit NG, Mohsen Shahmirzadi YEGANEH, Timothy Andrew BARCKHOLTZ, Glen Barry BRONS, Hong CHENG, Geoffrey Marshall KEISER, Donna J. CROWTHER, David T. FERRUGHELLI, Clarence CHASE, Emmanuel ULYSSE, Edward Andrew LEMON
  • Patent number: 9263755
    Abstract: In various aspects, systems and methods are provided for operating molten carbonate fuel cells with processes for iron and/or steel production. The systems and methods can provide process improvements such as increased efficiency, reduction of carbon emissions per ton of product produced, or simplified capture of the carbon emissions as an integrated part of the system. The number of separate processes and the complexity of the overall production system can be reduced while providing flexibility in fuel feed stock and the various chemical, heat, and electrical outputs needed to power the processes.
    Type: Grant
    Filed: March 13, 2014
    Date of Patent: February 16, 2016
    Assignee: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Paul J. Berlowitz, Timothy Andrew Barckholtz, Anita S. Lee
  • Publication number: 20160039753
    Abstract: A multipurpose chemical additives (MPC) is disclosed to mitigate fouling in hydrocarbon refinery processes, such as in a heat exchanger. A method for reducing fouling of a hydrocarbon is also disclosed that includes (i) providing a crude hydrocarbon for a refining process; and (ii) adding an additive to the crude hydrocarbon.
    Type: Application
    Filed: September 30, 2015
    Publication date: February 11, 2016
    Applicant: ExxonMobil Research and Engineering Company
    Inventors: Man Kit NG, Mohsen S. YEGANEH, Timothy Andrew BARCKHOLTZ, Glen Barry BRONS, Hong CHENG, Geoffrey Marshall KEISER, Donna J. CROWTHER, Patrick BRANT, David T. FERRUGHELLI, Clarence CHASE, Emmanuel ULYSSE, Edward Andrew LEMON
  • Patent number: 9257711
    Abstract: In various aspects, systems and methods are provided for operating a molten carbonate fuel cell, such as a fuel cell assembly, with increased production of syngas or hydrogen while also reducing or minimizing the amount of CO2 exiting the fuel cell in the cathode exhaust stream. This can allow for improved efficiency of syngas production while also generating electrical power.
    Type: Grant
    Filed: March 13, 2014
    Date of Patent: February 9, 2016
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Paul J. Berlowitz, Timothy Andrew Barckholtz, Frank Hershkowitz
  • Publication number: 20160013502
    Abstract: In various aspects, systems and methods are provided for integrated operation of molten carbonate fuel cells with turbines for power generation. Instead of selecting the operating conditions of a fuel cell to improve or maximize the electrical efficiency of the fuel cell, an excess of reformable fuel can be passed into the anode of the fuel cell to increase the chemical energy output of the fuel cell. The increased chemical energy output can be used for additional power generation, such as by providing fuel for a hydrogen turbine.
    Type: Application
    Filed: September 25, 2015
    Publication date: January 14, 2016
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Paul J. Berlowitz, Timothy Andrew Barckholtz, Frank Hershkowitz, Anita S. Lee
  • Publication number: 20150315487
    Abstract: A method for treating an emulsion of a hydrocarbon is disclosed. The method includes providing an emulsion of a crude hydrocarbon, and adding an additive to the emulsion to obtain a treated hydrocarbon.
    Type: Application
    Filed: May 13, 2015
    Publication date: November 5, 2015
    Applicant: ExxonMobil Research and Engineering Company
    Inventors: Mohsen Shahmirzadi YEGANEH, Man Kit NG, Timothy Andrew Barckholtz, Glen Barry Brons, Hong Cheng, Geoff Keiser, Donna J. Crowther, Patrick Brant, David T. Ferrughelli, Clarence Chase, Emmanuel Ulysse, Edward Andrew Lemon
  • Patent number: 9178234
    Abstract: In various aspects, systems and methods are provided for integrated operation of molten carbonate fuel cells with turbines for power generation. Instead of selecting the operating conditions of a fuel cell to improve or maximize the electrical efficiency of the fuel cell, an excess of reformable fuel can be passed into the anode of the fuel cell to increase the chemical energy output of the fuel cell. The increased chemical energy output can be used for additional power generation, such as by providing fuel for a hydrogen turbine.
    Type: Grant
    Filed: June 26, 2014
    Date of Patent: November 3, 2015
    Assignee: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Paul J. Berlowitz, Timothy Andrew Barckholtz, Frank H. Hershkowitz, Anita S. Lee
  • Publication number: 20150263364
    Abstract: In various aspects, systems and methods are provided for integrated operation of molten carbonate fuel cells with turbines for power generation. Instead of selecting the operating conditions of a fuel cell to improve or maximize the electrical efficiency of the fuel cell, an excess of reformable fuel can be passed into the anode of the fuel cell to increase the chemical energy output of the fuel cell. The increased chemical energy output can be used for additional power generation, such as by providing fuel for a hydrogen turbine.
    Type: Application
    Filed: June 26, 2014
    Publication date: September 17, 2015
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Paul J. Berlowitz, Timothy Andrew Barckholtz, Frank H. Hershkowitz, Anita S. Lee
  • Patent number: 9085737
    Abstract: A method for treating an emulsion of a hydrocarbon is disclosed. The method includes providing an emulsion of a crude hydrocarbon, and adding an additive to the emulsion to obtain a treated hydrocarbon.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: July 21, 2015
    Assignee: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Mohsen Shahmirzadi Yeganeh, ManKit Ng, Timothy Andrew Barckholtz, Glen Barry Brons, Hong Cheng, Geoffrey Marshall Keiser, Donna J. Crowther, Patrick Brant, David T. Ferrughelli, Clarence Chase, Emmanuel Ulysse, Edward A. Lemon
  • Patent number: 9077006
    Abstract: Systems and methods are provided for capturing CO2 from a combustion source using molten carbonate fuel cells (MCFCs). The fuel cells are operated to have a reduced anode fuel utilization. Optionally, at least a portion of the anode exhaust is recycled for use as a fuel for the combustion source. Optionally, a second portion of the anode exhaust is recycled for use as part of an anode input stream. This can allow for a reduction in the amount of fuel cell area required for separating CO2 from the combustion source exhaust and/or modifications in how the fuel cells are operated.
    Type: Grant
    Filed: June 26, 2014
    Date of Patent: July 7, 2015
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Paul J. Berlowitz, Timothy Andrew Barckholtz, Frank H. Hershkowitz
  • Patent number: 9077005
    Abstract: In various aspects, systems and methods are provided for integration of molten carbonate fuel cells with a Fischer-Tropsch synthesis process. The molten carbonate fuel cells can be integrated with a Fischer-Tropsch synthesis process in various manners, including providing synthesis gas for use in producing hydrocarbonaceous carbons. Additionally, integration of molten carbonate fuel cells with a Fischer-Tropsch synthesis process can facilitate further processing of vent streams or secondary product streams generated during the synthesis process.
    Type: Grant
    Filed: June 26, 2014
    Date of Patent: July 7, 2015
    Assignee: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Paul J. Berlowitz, Timothy Andrew Barckholtz, Frank H. Hershkowitz
  • Patent number: 9077008
    Abstract: In various aspects, systems and methods are provided for operating a molten carbonate fuel cell to reduce or minimize losses due to loss of heat energy. A molten carbonate fuel cell can be operated based on a desired ratio of heat generated by exothermic reactions in the fuel cell relative to heat consumed by endothermic reactions in the fuel cell and any optional integrated endothermic reaction stages.
    Type: Grant
    Filed: June 26, 2014
    Date of Patent: July 7, 2015
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Paul J. Berlowitz, Timothy Andrew Barckholtz, Frank H. Hershkowitz
  • Patent number: 9077007
    Abstract: In various aspects, systems and methods are provided for operating a molten carbonate fuel cell with an excess of reformable fuel relative to the amount of oxidation performed in the anode of the fuel cell. Instead of selecting the operating conditions of a fuel cell to improve or maximize the electrical efficiency of the fuel cell, an excess of reformable fuel can be passed into the anode of the fuel cell to increase the chemical energy output of the fuel cell. This can lead to an increase in the total efficiency of the fuel cell based on the combined electrical efficiency and chemical efficiency of the fuel cell.
    Type: Grant
    Filed: June 26, 2014
    Date of Patent: July 7, 2015
    Assignee: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Paul J. Berlowitz, Timothy Andrew Barckholtz, Frank H. Hershkowitz
  • Publication number: 20150093676
    Abstract: Systems and methods are provided for incorporating molten carbonate fuel cells into a heat recovery steam generation system (HRSG) for production of electrical power while also reducing or minimizing the amount of CO2 present in the flue gas exiting the HRSG. An optionally multi-layer screen or wall of molten carbonate fuel cells can be inserted into the HRSG so that the screen of molten carbonate fuel cells substantially fills the cross-sectional area. By using the walls of the HRSG and the screen of molten carbonate fuel cells to form a cathode input manifold, the overall amount of duct or flow passages associated with the MCFCs can be reduced.
    Type: Application
    Filed: July 8, 2014
    Publication date: April 2, 2015
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Paul J. Berlowitz, Timothy Andrew Barckholtz, Frank H. Hershkowitz
  • Publication number: 20140342251
    Abstract: Systems and methods are provided for capturing CO2 from a combustion source using molten carbonate fuel cells (MCFCs). The fuel cells are operated to have a reduced anode fuel utilization. Optionally, at least a portion of the anode exhaust is recycled for use as a fuel for the combustion source. Optionally, a second portion of the anode exhaust is recycled for use as part of an anode input stream. This can allow for a reduction in the amount of fuel cell area required for separating CO2 from the combustion source exhaust and/or modifications in how the fuel cells are operated.
    Type: Application
    Filed: June 26, 2014
    Publication date: November 20, 2014
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Paul J. Berlowitz, Timothy Andrew Barckholtz, Frank H. Hershkowitz
  • Publication number: 20140343173
    Abstract: In various aspects, systems and methods are provided for integration of molten carbonate fuel cells with a Fischer-Tropsch synthesis process. The molten carbonate fuel cells can be integrated with a Fischer-Tropsch synthesis process in various manners, including providing synthesis gas for use in producing hydrocarbonaceous carbons. Additionally, integration of molten carbonate fuel cells with a Fischer-Tropsch synthesis process can facilitate further processing of vent streams or secondary product streams generated during the synthesis process.
    Type: Application
    Filed: June 26, 2014
    Publication date: November 20, 2014
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Paul J. Berlowitz, Timothy Andrew Barckholtz, Frank H. Hershkowitz
  • Publication number: 20140302414
    Abstract: In various aspects, systems and methods are provided for operating a molten carbonate fuel cell to reduce or minimize losses due to loss of heat energy. A molten carbonate fuel cell can be operated based on a desired ratio of heat generated by exothermic reactions in the fuel cell relative to heat consumed by endothermic reactions in the fuel cell and any optional integrated endothermic reaction stages.
    Type: Application
    Filed: June 26, 2014
    Publication date: October 9, 2014
    Applicant: ExxonMobil Research and Engineering Company
    Inventors: Paul J. Berlowitz, Timothy Andrew Barckholtz, Frank H. Hershkowitz
  • Publication number: 20140302413
    Abstract: In various aspects, systems and methods are provided for operating a molten carbonate fuel cell with an excess of reformable fuel relative to the amount of oxidation performed in the anode of the fuel cell. Instead of selecting the operating conditions of a fuel cell to improve or maximize the electrical efficiency of the fuel cell, an excess of reformable fuel can be passed into the anode of the fuel cell to increase the chemical energy output of the fuel cell. This can lead to an increase in the total efficiency of the fuel cell based on the combined electrical efficiency and chemical efficiency of the fuel cell.
    Type: Application
    Filed: June 26, 2014
    Publication date: October 9, 2014
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Paul J. Berlowitz, Timothy Andrew Barckholtz, Frank H. Hershkowitz