Patents by Inventor Timothy Byron Brown

Timothy Byron Brown has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240092204
    Abstract: An electrical energy absorption and heat storage system absorbs electrical energy transferred during a calibration process of an electric vehicle charging station. The system includes a resistive load, which, in operation, receives electrical energy and converts the electrical energy into heat. The heat is transferred to and stored in one or more heat storage mediums and then dissipated. The heat storage mediums may include phase-change heat storage mediums, such as water, solid heat storage mediums, such as ceramic mass (e.g., alumina), or combinations thereof. The stored heat may be dissipated as steam, contained for later dissipation, or combinations thereof. Heat sinks, convection and conduction cooling may be employed to dissipate the stored heat. An energy status of the system, together with information regarding the characteristics of the calibration process, may be used to determine whether it is appropriate to use the system to absorb the heat of the calibration process.
    Type: Application
    Filed: September 21, 2023
    Publication date: March 21, 2024
    Inventor: Timothy Byron Brown
  • Publication number: 20230317543
    Abstract: A structure includes a first substrate and a second substrate. The second substrate includes a device region, and a peripheral region that laterally surrounds the device region. An insulating layer is between the first substrate and the second substrate. An opening laterally surrounds the device region and separates the device region from the peripheral region. The opening extends into the second substrate. An electrical device is in the device region, and a conductive track is in electrical communication with the electrical device. The conductive track is positioned in the opening and the peripheral region.
    Type: Application
    Filed: April 1, 2022
    Publication date: October 5, 2023
    Inventor: Timothy Byron Brown
  • Patent number: 11248975
    Abstract: A method for expanding the dynamic range of a capacitive pressure sensor and a capacitive pressure sensor having an expanded dynamic range are provided. The capacitive pressure sensor may comprise capacitive plates. At least one plate may be contoured to increase a surface area exposed to the other of the capacitive plates. The capacitive pressure sensor may comprise a diaphragm that is movably responsive to pressure. The diaphragm may have a hollowed volume within an interior of the diaphragm operative to increase a flexibility of the diaphragm in response to the pressure. The capacitive pressure sensor may be one of a plurality of capacitive pressure sensors in a pressure sensing device. The capacitive pressure sensors may have different capacitive responses and may each output a pressure measurement, whereby the device may select a pressure measurement to output based at least in part on the capacitive responses.
    Type: Grant
    Filed: March 17, 2020
    Date of Patent: February 15, 2022
    Assignee: Fluke Corporation
    Inventor: Timothy Byron Brown
  • Publication number: 20200217734
    Abstract: A method for expanding the dynamic range of a capacitive pressure sensor and a capacitive pressure sensor having an expanded dynamic range are provided. The capacitive pressure sensor may comprise capacitive plates. At least one plate may be contoured to increase a surface area exposed to the other of the capacitive plates. The capacitive pressure sensor may comprise a diaphragm that is movably responsive to pressure. The diaphragm may have a hollowed volume within an interior of the diaphragm operative to increase a flexibility of the diaphragm in response to the pressure. The capacitive pressure sensor may be one of a plurality of capacitive pressure sensors in a pressure sensing device. The capacitive pressure sensors may have different capacitive responses and may each output a pressure measurement, whereby the device may select a pressure measurement to output based at least in part on the capacitive responses.
    Type: Application
    Filed: March 17, 2020
    Publication date: July 9, 2020
    Inventor: Timothy Byron Brown
  • Patent number: 10612991
    Abstract: A method for expanding the dynamic range of a capacitive pressure sensor and a capacitive pressure sensor having an expanded dynamic range are provided. The capacitive pressure sensor may comprise capacitive plates. At least one plate may be contoured to increase a surface area exposed to the other of the capacitive plates. The capacitive pressure sensor may comprise a diaphragm that is movably responsive to pressure. The diaphragm may have a hollowed volume within an interior of the diaphragm operative to increase a flexibility of the diaphragm in response to the pressure. The capacitive pressure sensor may be one of a plurality of capacitive pressure sensors in a pressure sensing device. The capacitive pressure sensors may have different capacitive responses and may each output a pressure measurement, whereby the device may select a pressure measurement to output based at least in part on the capacitive responses.
    Type: Grant
    Filed: August 25, 2017
    Date of Patent: April 7, 2020
    Assignee: Fluke Corporation
    Inventor: Timothy Byron Brown
  • Patent number: 10119874
    Abstract: A pressure transducer comprising a flexible member made of amorphous quartz and a crystalline quartz sensor are coupled together without an adhesive material. Instead, the amorphous quartz and the crystalline quartz sensor are coupled together at the molecular level. In some embodiments, the crystalline quartz sensor remains in compression or tension during the entire operating range of the pressure transducer. In one embodiment, the crystalline quartz sensor is pre-stressed in either compression or tension when the pressure transducer is exposed to atmospheric pressure. In one embodiment, pressure transducer is located in pressure stabilizing system.
    Type: Grant
    Filed: July 28, 2016
    Date of Patent: November 6, 2018
    Assignee: Fluke Corporation
    Inventors: Timothy Byron Brown, Eric Lane Solis
  • Publication number: 20180031432
    Abstract: A pressure transducer comprising a flexible member made of amorphous quartz and a crystalline quartz sensor are coupled together without an adhesive material. Instead, the amorphous quartz and the crystalline quartz sensor are coupled together at the molecular level. In some embodiments, the crystalline quartz sensor remains in compression or tension during the entire operating range of the pressure transducer. In one embodiment, the crystalline quartz sensor is pre-stressed in either compression or tension when the pressure transducer is exposed to atmospheric pressure. In one embodiment, pressure transducer is located in pressure stabilizing system.
    Type: Application
    Filed: July 28, 2016
    Publication date: February 1, 2018
    Inventors: Timothy Byron Brown, Eric Lane Solis