Patents by Inventor Timothy C. Wright

Timothy C. Wright has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10882180
    Abstract: A robotic system that can be used to treat a patient. The robotic system includes a mobile robot that has a camera. The mobile robot is controlled by a remote station that has a monitor. A physician can use the remote station to move the mobile robot into view of a patient. An image of the patient is transmitted from the robot camera to the remote station monitor. A medical personnel at the robot site can enter patient information into the system through a user interface. The patient information can be stored in a server. The physician can access the information from the remote station. The remote station may provide graphical user interfaces that display the patient information and provide both a medical tool and a patient management plan.
    Type: Grant
    Filed: November 11, 2019
    Date of Patent: January 5, 2021
    Assignee: TELADOC HEALTH, INC.
    Inventors: Timothy C. Wright, Fuji Lai, Marco Pinter, Yulun Wang
  • Patent number: 10808882
    Abstract: A robot system that includes a robot face with a monitor, a camera, a speaker and a microphone. The robot face is connected to a stand that can be placed in a chair. The stand is configured so that the robot face is at a height that approximates the location of a person's head if they were sitting in the chair. The robot face is coupled to a remote station that can be operated by a user. The face includes a monitor that displays a video image of a user of the remote station. The stand may be coupled to the robot face with articulated joints that can be controlled by the remote station. By way of example, the user at the remote station can cause the face to pan and/or tilt.
    Type: Grant
    Filed: October 19, 2010
    Date of Patent: October 20, 2020
    Assignee: INTOUCH TECHNOLOGIES, INC.
    Inventors: Yulun Wang, Timothy C Wright, Daniel S Sanchez, Marco C Pinter
  • Patent number: 10769739
    Abstract: Disclosed herein are various embodiments of the systems and methods for management of information among various medical providers and/or facilities. According to various embodiments, the systems and methods disclosed herein may facilitate the completion of location specific forms in a variety of formats by medical professionals. Certain embodiments may be employed by remotely located medical professional utilizing telemedicine technologies. Such systems may provide medical professionals utilizing telemedicine technologies with a consistent interface for gathering and inputting patient information, while continuing to allow for the use of a wide variety of forms by different medical providers and facilities. In addition to facilitating the use of location-specific forms, the systems and methods for management of information disclosed herein may also be used for the collection of patient care metrics.
    Type: Grant
    Filed: April 25, 2011
    Date of Patent: September 8, 2020
    Assignee: INTOUCH TECHNOLOGIES, INC.
    Inventors: Jonathan Southard, Scott Ross, Timothy C Wright, Dan Habecker, Jennifer Neisse, Elizabeth E Thomas, Andre Grujovski
  • Publication number: 20200273565
    Abstract: The present disclosure describes various aspects of remote presence interfaces (RPIs) for use on portable electronic devices (PEDs) to interface with remote presence devices. An RPI may allow a user to interact with a telepresence device, view a live video feed, provide navigational instructions, and/or otherwise interact with the telepresence device. The RPI may allow a user to manually, semi-autonomously, or autonomously control the movement of the telepresence device. One or more panels associated with a video feed, patient data, calendars, date, time, telemetry data, PED data, telepresence device data, healthcare facility information, healthcare practitioner information, menu tabs, settings controls, and/or other features may be utilized via the RPI.
    Type: Application
    Filed: May 13, 2020
    Publication date: August 27, 2020
    Inventors: Charles S. Jordan, Andy Young, Mei Sheng Ng, Yair Lurie, Fuji Lai, Timothy C. Wright, Cody Herzog, Blair Whitney, Bill Rizzi, James Ballantyne, Yulun Wang, Cheuk Wah Wong, Justin H. Kearns, Orjeta Taka, Ramchandra Karandikar
  • Publication number: 20200215683
    Abstract: A robotic system that can be used to treat a patient. The robotic system includes a mobile robot that has a camera. The mobile robot is controlled by a remote station that has a monitor. A physician can use the remote station to move the mobile robot into view of a patient. An image of the patient is transmitted from the robot camera to the remote station monitor. A medical personnel at the robot site can enter patient information into the system through a user interface. The patient information can be stored in a server. The physician can access the information from the remote station. The remote station may provide graphical user interfaces that display the patient information and provide both a medical tool and a patient management plan.
    Type: Application
    Filed: November 11, 2019
    Publication date: July 9, 2020
    Inventors: Timothy C. Wright, Fuji Lai, Marco Pinter, Yulun Wang
  • Publication number: 20200198142
    Abstract: The present disclosure describes various clinical workflows and other methods that utilize a telemedicine device in a healthcare network. According to various embodiments, a healthcare practitioner may utilize a remote presence interfaces (RPIs) on a remote access device (RAD), such as a portable electronic device (PED) to interface with a telemedicine device. The healthcare practitioner may directly interface with a display interface of a telemedicine device or utilize the RPI on a RAD. The present disclosure provides various clinical workflows involving a telemedicine device to view patient data during a telepresence session, perform rounds to visit multiple patients, monitor a patient, allow for remote visitations by companions, and various other clinical workflow methods.
    Type: Application
    Filed: March 2, 2020
    Publication date: June 25, 2020
    Inventors: Fuji Lai, Timothy C. Wright, Yair Lurie, Yulun Wang
  • Patent number: 10658083
    Abstract: The present disclosure describes various aspects of remote presence interfaces (RPIs) for use on portable electronic devices (PEDs) to interface with remote telepresence devices. An RPI may allow a user to interact with a telepresence device, view a live video feed, provide navigational instructions, and/or otherwise interact with the telepresence device. The RPI may allow a user to manually, semi-autonomously, or autonomously control the movement of the telepresence device. One or more panels associated with a video feed, patient data, calendars, date, time, telemetry data, PED data, telepresence device data, healthcare facility information, healthcare practitioner information, menu tabs, settings controls, and/or other features may be utilized via the RPI.
    Type: Grant
    Filed: July 25, 2018
    Date of Patent: May 19, 2020
    Assignee: INTOUCH TECHNOLOGIES, INC.
    Inventors: Charles S. Jordan, Andy Young, Mei Sheng Ng, Yair Lurie, Fuji Lai, Timothy C. Wright, Cody Herzog, Blair Whitney, Bill Rizzi, James Ballantyne, Yulun Wang, Cheuk Wah Wong, Justin Kearns, Orjeta Taka, Ramchandra Karandikar
  • Patent number: 10603792
    Abstract: The present disclosure describes various clinical workflows and other methods that utilize a telemedicine device in a healthcare network. According to various embodiments, a healthcare practitioner may utilize a remote presence interfaces (RPIs) on a remote access device (RAD), such as a portable electronic device (PED) to interface with a telemedicine device. The healthcare practitioner may directly interface with a display interface of a telemedicine device or utilize the RPI on a RAD. The present disclosure provides various clinical workflows involving a telemedicine device to view patient data during a telepresence session, perform rounds to visit multiple patients, monitor a patient, allow for remote visitations by companions, and various other clinical workflow methods.
    Type: Grant
    Filed: November 21, 2014
    Date of Patent: March 31, 2020
    Assignee: INTOUCH TECHNOLOGIES, INC.
    Inventors: Fuji Lai, Timothy C. Wright, Yair Lurie, Yulun Wang
  • Patent number: 10471588
    Abstract: A robotic system that can be used to treat a patient. The robotic system includes a mobile robot that has a camera. The mobile robot is controlled by a remote station that has a monitor. A physician can use the remote station to move the mobile robot into view of a patient. An image of the patient is transmitted from the robot camera to the remote station monitor. A medical personnel at the robot site can enter patient information into the system through a user interface. The patient information can be stored in a server. The physician can access the information from the remote station. The remote station may provide graphical user interfaces that display the patient information and provide both a medical tool and a patient management plan.
    Type: Grant
    Filed: March 28, 2012
    Date of Patent: November 12, 2019
    Assignee: INTOUCH TECHNOLOGIES, INC.
    Inventors: Timothy C. Wright, Fuji Lai, Marco Pinter, Yulun Wang
  • Publication number: 20190066839
    Abstract: The present disclosure describes various aspects of remote presence interfaces (RPIs) for use on portable electronic devices (PEDs) to interface with remote telepresence devices. An RPI may allow a user to interact with a telepresence device, view a live video feed, provide navigational instructions, and/or otherwise interact with the telepresence device. The RPI may allow a user to manually, semi-autonomously, or autonomously control the movement of the telepresence device. One or more panels associated with a video feed, patient data, calendars, date, time, telemetry data, PED data, telepresence device data, healthcare facility information, healthcare practitioner information, menu tabs, settings controls, and/or other features may be utilized via the RPI.
    Type: Application
    Filed: July 25, 2018
    Publication date: February 28, 2019
    Inventors: Charles S. Jordan, Andy Young, Mei Sheng Ng, Yair Lurie, Fuji Lai, Timothy C. Wright, Cody Herzog, Blair Whitney, Bill Rizzi, James Ballantyne, Yulun Wang, Cheuk Wah Wong, Justin Kearns, Orjeta Taka, Ramchandra Karandikar
  • Publication number: 20180263703
    Abstract: A telepresence device may autonomously check patients. The telepresence device may determine the frequency of checking based on whether the patient has a risk factor. The telepresence device may include an image sensor, a thermal camera, a depth sensor, one or more systems for interacting with patients, or the like. The telepresence device may be configured to evaluate the patient's condition using the one or more sensors. The telepresence device may measure physiological characteristics using Eulerian video magnification, may detect pallor, fluid level, or fluid color, may detect thermal asymmetry, may determine a psychological state from body position or movement, or the like. The telepresence device may determine whether the patient is experiencing a potentially harmful condition, such as sepsis or stroke, and may trigger an alarm if so. To overcome alarm fatigue, the telepresence device may annoy a care provider until the care provider responds to an alarm.
    Type: Application
    Filed: May 21, 2018
    Publication date: September 20, 2018
    Inventors: Marco Pinter, Timothy C. Wright, H. Neal Reynolds, Fuji Lai, Yulun Wang
  • Publication number: 20180257233
    Abstract: A robotic system that is used in a tele-presence session. For example, the system can be used by medical personnel to examine, diagnose and prescribe medical treatment in the session. The system includes a robot that has a camera and is controlled by a remote station. The system further includes a storage device that stores session content data regarding the session. The data may include a video/audio taping of the session by the robot. The session content data may also include time stamps that allow a user to determine the times that events occurred during the session. The session content data may be stored on a server that accessible by multiple users. Billing information may be automatically generated using the session content data.
    Type: Application
    Filed: May 7, 2018
    Publication date: September 13, 2018
    Inventors: Timothy C. Wright, Fuji Lai, Marco Pinter, Yulun Wang
  • Patent number: 10061896
    Abstract: The present disclosure describes various aspects of remote presence interfaces (RPIs) for use on portable electronic devices (PEDs) to interface with remote telepresence devices. An RPI may allow a user to interact with a telepresence device, view a live video feed, provide navigational instructions, and/or otherwise interact with the telepresence device. The RPI may allow a user to manually, semi-autonomously, or autonomously control the movement of the telepresence device. One or more panels associated with a video feed, patient data, calendars, date, time, telemetry data, PED data, telepresence device data, healthcare facility information, healthcare practitioner information, menu tabs, settings controls, and/or other features may be utilized via the RPI.
    Type: Grant
    Filed: May 13, 2016
    Date of Patent: August 28, 2018
    Assignees: INTOUCH TECHNOLOGIES, INC., IROBOT CORPORATION
    Inventors: Charles S. Jordan, Andy Young, Mei Sheng Ng, Yair Lurie, Fuji Lai, Timothy C. Wright, Cody Herzog, Blair Whitney, Bill Rizzi, James Ballantyne, Yulun Wang, Cheuk Wah Wong, Justin H. Kearns, Orjeta Taka, Ramchandra Karandikar
  • Patent number: 9974612
    Abstract: A telepresence device may autonomously check patients. The telepresence device may determine the frequency of checking based on whether the patient has a risk factor. The telepresence device may include an image sensor, a thermal camera, a depth sensor, one or more systems for interacting with patients, or the like. The telepresence device may be configured to evaluate the patient's condition using the one or more sensors. The telepresence device may measure physiological characteristics using Eulerian video magnification, may detect pallor, fluid level, or fluid color, may detect thermal asymmetry, may determine a psychological state from body position or movement, or the like. The telepresence device may determine whether the patient is experiencing a potentially harmful condition, such as sepsis or stroke, and may trigger an alarm if so. To overcome alarm fatigue, the telepresence device may annoy a care provider until the care provider responds to an alarm.
    Type: Grant
    Filed: February 13, 2014
    Date of Patent: May 22, 2018
    Assignee: INTOUCH TECHNOLOGIES, INC.
    Inventors: Marco Pinter, Timothy C. Wright, H. Neal Reynolds, Fuji Lai, Yulun Wang
  • Publication number: 20160283685
    Abstract: The present disclosure describes various aspects of remote presence interfaces (RPIs) for use on portable electronic devices (PEDs) to interface with remote telepresence devices. An RPI may allow a user to interact with a telepresence device, view a live video feed, provide navigational instructions, and/or otherwise interact with the telepresence device. The RPI may allow a user to manually, semi-autonomously, or autonomously control the movement of the telepresence device. One or more panels associated with a video feed, patient data, calendars, date, time, telemetry data, PED data, telepresence device data, healthcare facility information, healthcare practitioner information, menu tabs, settings controls, and/or other features may be utilized via the RPI.
    Type: Application
    Filed: May 13, 2016
    Publication date: September 29, 2016
    Inventors: Charles S. Jordan, Andy Young, Mei Sheng Ng, Yair Lurie, Fuji Lai, Timothy C. Wright, Cody Herzog, Blair Whitney, Bill Rizzi, James Ballantyne, Yulun Wang, Cheuk Wah Wong, Justin Kearns, Orjeta Taka, Ramchandra Karandikar
  • Patent number: 9361021
    Abstract: The present disclosure describes various aspects of remote presence interfaces (RPIs) for use on portable electronic devices (PEDs) to interface with remote telepresence devices. An RPI may allow a user to interact with a telepresence device, view a live video feed, provide navigational instructions, and/or otherwise interact with the telepresence device. The RPI may allow a user to manually, semi-autonomously, or autonomously control the movement of the telepresence device. One or more panels associated with a video feed, patient data, calendars, date, time, telemetry data, PED data, telepresence device data, healthcare facility information, healthcare practitioner information, menu tabs, settings controls, and/or other features may be utilized via the RPI.
    Type: Grant
    Filed: November 21, 2014
    Date of Patent: June 7, 2016
    Assignees: IROBOT CORPORATION, INTOUCH TECHNOLOGIES, INC.
    Inventors: Charles S. Jordan, Andy Young, Mei Sheng Ng, Yair Lurie, Fuji Lai, Timothy C. Wright, John Cody Herzog, Blair Whitney, Bill Rizzi, James Ballantyne, Yulun Wang, Cheuk Wah Wong, Justin Kearns, Orjeta Taka, Ramchandra Karandikar
  • Publication number: 20160154940
    Abstract: Disclosed herein are various embodiments of systems and methods for visualizing, analyzing, and managing telepresence devices operating in a telepresence network of healthcare facilities. The visualization and management system for telepresence devices may display a first viewing level that includes a geographical representation of the location of various telepresence devices. A user may selectively view a global view of all telepresence devices, telepresence devices within a particular region, and/or the details of a particular telepresence device. A user may also access a viewing level of a network of healthcare facilities. The user may view, analyze, and/or manage the healthcare network, telepresence device network, individual telepresence devices, connection rules, and/or other aspects of the healthcare network using the geographical visualization and management tool described herein.
    Type: Application
    Filed: February 1, 2016
    Publication date: June 2, 2016
    Inventors: Scott Ross, Kelton Temby, Jonathan Southard, Dan Habecker, Michael Chan, Timothy C. Wright, Charles S. Jordan, Joshua A. Bouganim
  • Patent number: 9251313
    Abstract: Disclosed herein are various embodiments of systems and methods for visualizing, analyzing, and managing telepresence devices operating in a telepresence network of healthcare facilities. The visualization and management system for telepresence devices may display a first viewing level that includes a geographical representation of the location of various telepresence devices. A user may selectively view a global view of all telepresence devices, telepresence devices within a particular region, and/or the details of a particular telepresence device. A user may also access a viewing level of a network of healthcare facilities. The user may view, analyze, and/or manage the healthcare network, telepresence device network, individual telepresence devices, connection rules, and/or other aspects of the healthcare network using the geographical visualization and management tool described herein.
    Type: Grant
    Filed: April 11, 2012
    Date of Patent: February 2, 2016
    Assignee: INTOUCH TECHNOLOGIES, INC.
    Inventors: Scott Ross, Kelton Temby, Jonathan Southard, Dan Habecker, Michael C. Chan, Timothy C. Wright, Charles S. Jordan, Joshua A. Bouganim
  • Publication number: 20150339452
    Abstract: A robotic system that is used in a tele-presence session. For example, the system can be used by medical personnel to examine, diagnose and prescribe medical treatment in the session. The system includes a robot that has a camera and is controlled by a remote station. The system further includes a storage device that stores session content data regarding the session. The data may include a video/audio taping of the session by the robot. The session content data may also include time stamps that allow a user to determine the times that events occurred during the session. The session content data may be stored on a server that accessible by multiple users. Billing information may be automatically generated using the session content data.
    Type: Application
    Filed: August 28, 2014
    Publication date: November 26, 2015
    Inventors: Timothy C. Wright, Fuji Lai, Marco Pinter, Yulun Wang
  • Publication number: 20150077502
    Abstract: The present disclosure describes various aspects of remote presence interfaces (RPIs) for use on portable electronic devices (PEDs) to interface with remote telepresence devices. An RPI may allow a user to interact with a telepresence device, view a live video feed, provide navigational instructions, and/or otherwise interact with the telepresence device. The RPI may allow a user to manually, semi-autonomously, or autonomously control the movement of the telepresence device. One or more panels associated with a video feed, patient data, calendars, date, time, telemetry data, PED data, telepresence device data, healthcare facility information, healthcare practitioner information, menu tabs, settings controls, and/or other features may be utilized via the RPI.
    Type: Application
    Filed: November 21, 2014
    Publication date: March 19, 2015
    Inventors: Charles S. Jordan, Andy Young, Mei Sheng Ng, Yair Lurie, Fuji Lai, Timothy C. Wright, John Cody Herzog, Blair Whitney, Bill Rizzi, James Ballantyne, Yulun Wang, Cheuk Wah Wong, Justin Kearns, Orjeta Taka, Ramchandra Karandikar