Patents by Inventor Timothy Campbell
Timothy Campbell has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12278428Abstract: Example embodiments relate to low elevation side lobe antennas with fan-shaped beams. An example radar unit may include a radiating plate having a first side and a second side with an illuminator, a waveguide horn, a waveguide opening, and a radiating sleeve extending into the first side of the radiating plate. The waveguide opening is positioned on the first end of the first side and the radiating sleeve is positioned on the second end of the first side. The radar unit also includes a metallic cover coupled to the first side of the radiating plate such that the metallic cover and the radiating plate form waveguide structures.Type: GrantFiled: April 27, 2023Date of Patent: April 15, 2025Assignee: Waymo LLCInventors: Edwin Lim, Timothy Campbell, Matthew Markel
-
Publication number: 20250052859Abstract: Example embodiments relate to radar reflection filtering using a vehicle sensor system. A computing device may detect a first object in radar data from a radar unit coupled to a vehicle and, responsive to determining that information corresponding to the first object is unavailable from other vehicle sensors, use the radar data to determine a position and a velocity for the first object relative to the radar unit. The computing device may also detect a second object aligned with a vector extending between the radar unit and the first object. Based on a geometric relationship between the vehicle, the first object, and the second object, the computing device may determine that the first object is a self-reflection of the vehicle caused at least in part by the second object and control the vehicle based on this determination.Type: ApplicationFiled: October 29, 2024Publication date: February 13, 2025Inventors: Clayton Kunz, Timothy Campbell
-
Publication number: 20250004126Abstract: Example embodiments relate to radar image video compression techniques using per-pixel Doppler measurements, which can involve initially receiving radar data from a radar unit to generate a radar representation that represents surfaces in the environment. Based on Doppler scores in the radar representation, a range rate can be determined for each pixel that indicates a radial direction motion for a surface represented by the pixel. The range rates and backscatter values can then be used to estimate a radar representation prediction for subsequent radar data received from the radar unit, which enables a generation of a compressed radar data file that represents the difference between the radar representation prediction and the actual representation determined for the subsequent radar data. The compressed radar data file can be stored in memory, transmitted to other devices, and decompressed and used to train models via machine learning.Type: ApplicationFiled: September 13, 2024Publication date: January 2, 2025Inventors: Nicholas Armstrong-Crews, Filip Perich, Timothy Campbell
-
Patent number: 12164055Abstract: Example embodiments relate to radar reflection filtering using a vehicle sensor system. A computing device may detect a first object in radar data from a radar unit coupled to a vehicle and, responsive to determining that information corresponding to the first object is unavailable from other vehicle sensors, use the radar data to determine a position and a velocity for the first object relative to the radar unit. The computing device may also detect a second object aligned with a vector extending between the radar unit and the first object. Based on a geometric relationship between the vehicle, the first object, and the second object, the computing device may determine that the first object is a self-reflection of the vehicle caused at least in part by the second object and control the vehicle based on this determination.Type: GrantFiled: July 19, 2021Date of Patent: December 10, 2024Assignee: Waymo LLCInventors: Clayton Kunz, Timothy Campbell
-
Patent number: 12164054Abstract: Example embodiments relate to methods and systems for implementing radar electronic support measure operations. A vehicle's processing unit may receive information relating to electromagnetic energy radiating in an environment of the vehicle that is detected using a vehicle radar system. The electromagnetic energy originated from one or more external emitters, such as radar signals transmitted by other vehicles. The processing unit may determine a spectrum occupancy representation that indicates spectral regions occupied by the electromagnetic energy and subsequently adjust operation of the vehicle radar system based on the spectrum occupancy representation to reduce or mitigate interference with the external emitters in the vehicle's environment. In some examples, the vehicle radar system may be switched to a passive receive-only mode to measure the electromagnetic energy radiating in the environment from other emitters.Type: GrantFiled: November 9, 2020Date of Patent: December 10, 2024Assignee: Waymo LLCInventors: Matthew Markel, Timothy Campbell, Alessandro Temil
-
Patent number: 12117520Abstract: Example embodiments relate to radar image video compression techniques using per-pixel Doppler measurements, which can involve initially receiving radar data from a radar unit to generate a radar representation that represents surfaces in the environment. Based on Doppler scores in the radar representation, a range rate can be determined for each pixel that indicates a radial direction motion for a surface represented by the pixel. The range rates and backscatter values can then be used to estimate a radar representation prediction for subsequent radar data received from the radar unit, which enables a generation of a compressed radar data file that represents the difference between the radar representation prediction and the actual representation determined for the subsequent radar data. The compressed radar data file can be stored in memory, transmitted to other devices, and decompressed and used to train models via machine learning.Type: GrantFiled: July 8, 2021Date of Patent: October 15, 2024Assignee: Waymo LLCInventors: Nicholas Armstrong-Crews, Filip Perich, Timothy Campbell
-
Publication number: 20240295629Abstract: Examples relate to near-field radar filters that can enhance measurements near a radar unit. An example may involve receiving a first set of radar reflection signals at a radar unit coupled to a vehicle and determining a filter configured to offset near-field effects of radar reflection signals received at the radar unit. In some instances, the filter depends on an azimuth angle and a distance for surfaces in the environment causing the first set of radar reflection signals. The example may also involve receiving, at the radar unit, a second set of radar reflection signals and determining, using the filter, an azimuth angle and a distance for surfaces in the environment causing the second set of radar reflection signals. The vehicle may be controlled based in part on the azimuth angle and the distance for the surfaces causing the second plurality of radar reflection signals.Type: ApplicationFiled: May 3, 2024Publication date: September 5, 2024Inventors: Timothy Campbell, Brett Coon
-
Patent number: 12007498Abstract: Examples relate to near-field radar filters that can enhance measurements near a radar unit. An example may involve receiving a first set of radar reflection signals at a radar unit coupled to a vehicle and determining a filter configured to offset near-field effects of radar reflection signals received at the radar unit. In some instances, the filter depends on an azimuth angle and a distance for surfaces in the environment causing the first set of radar reflection signals. The example may also involve receiving, at the radar unit, a second set of radar reflection signals and determining, using the filter, an azimuth angle and a distance for surfaces in the environment causing the second set of radar reflection signals. The vehicle may be controlled based in part on the azimuth angle and the distance for the surfaces causing the second plurality of radar reflection signals.Type: GrantFiled: November 19, 2020Date of Patent: June 11, 2024Assignee: Waymo LLCInventors: Timothy Campbell, Brett Coon
-
Patent number: 11835624Abstract: In an example method, a vehicle configured to operate in an autonomous mode could have a radar system used to aid in vehicle guidance. The method could include transmitting at least two signal pulses. The method further includes, for each transmitted signal pulse, receiving a reflection signal associated with reflection of the respective transmitted signal pulse. Each reflection signal may be received when the apparatus is in a different respective location. Additionally, the method includes processing the received reflection signals to determine target information relating to one or more targets in an environment of the vehicle. Also, the method includes correlating the target information with at least one object of a predetermined map of the environment of the vehicle to provide correlated target information. Yet further, the method includes storing the correlated target information for the at least one object in an electronic database.Type: GrantFiled: October 22, 2021Date of Patent: December 5, 2023Assignee: Waymo LLCInventor: Timothy Campbell
-
Publication number: 20230261389Abstract: Example embodiments relate to low elevation side lobe antennas with fan-shaped beams. An example radar unit may include a radiating plate having a first side and a second side with an illuminator, a waveguide horn, a waveguide opening, and a radiating sleeve extending into the first side of the radiating plate. The waveguide opening is positioned on the first end of the first side and the radiating sleeve is positioned on the second end of the first side. The radar unit also includes a metallic cover coupled to the first side of the radiating plate such that the metallic cover and the radiating plate form waveguide structures.Type: ApplicationFiled: April 27, 2023Publication date: August 17, 2023Inventors: Edwin Lim, Timothy Campbell, Matthew Markel
-
Patent number: 11726174Abstract: Example embodiments described herein involve techniques for removing transmit phase noise. A system may cause a printed circuit board (PCB) to supply a signal enabling the transmission line to couple the signal to the radar unit and the delay line to couple the signal to the quadrature coupler. The radar unit may use the signal to transmit a radar signal on a radio channel having a centered radio frequency while the quadrature coupler uses the signal to produce an output from the quadrature coupler. The system may estimate phase noise relative to the radio channel having the centered RF based on the output from the quadrature coupler, receive, from the radar unit, a radar reflection corresponding to the radar signal, and determine information representative of one or more objects in an environment based on the radar reflection and the phase noise.Type: GrantFiled: December 28, 2020Date of Patent: August 15, 2023Assignee: Waymo LLCInventors: Timothy Campbell, Edwin Lim
-
Patent number: 11698454Abstract: Example embodiments described herein involve determining three dimensional data representative of an environment for an autonomous vehicle using radar. An example embodiment involves receiving radar reflection signals at a radar unit coupled to a vehicle and determining an azimuth angle and a distance for surfaces in the environment causing the radar reflection signals. The embodiment further involves determining an elevation angle for the surfaces causing the radar reflection signals based on phase information of the radar reflection signals and controlling the vehicle based at least in part on the azimuth angle, the distance, and the elevation angle for the surfaces causing the plurality of radar reflection signals. In some instances, the radar unit is configured to receive radar reflection signals using a staggered linear array with one or multiple radiating elements offset in the array.Type: GrantFiled: February 4, 2021Date of Patent: July 11, 2023Assignee: Waymo LLCInventor: Timothy Campbell
-
Patent number: 11670864Abstract: Example embodiments relate to low elevation side lobe antennas with fan-shaped beams. An example radar unit may include a radiating plate having a first side and a second side with an illuminator, a waveguide horn, a waveguide opening, and a radiating sleeve extending into the first side of the radiating plate. The waveguide opening is positioned on the first end of the first side and the radiating sleeve is positioned on the second end of the first side. The radar unit also includes a metallic cover coupled to the first side of the radiating plate such that the metallic cover and the radiating plate form waveguide structures.Type: GrantFiled: December 29, 2020Date of Patent: June 6, 2023Assignee: Waymo LLCInventors: Edwin Lim, Timothy Campbell, Matthew Markel
-
Patent number: 11619734Abstract: A radar system includes a split-block assembly unit comprising a first portion and second portion, where the first portion and the second portion form a seam. The radar system further includes a plurality of ports located on a bottom side of the second portion opposite the seam. Additionally, the radar system includes a plurality of radiating elements located on a top side of the first portion opposite the seam. The plurality of radiating elements is arranged in a plurality of arrays. The plurality of arrays includes a set of multiple-input multiple-output (MIMO) transmission arrays, a set of synthetic aperture radar (SAR) transmission arrays, and at least one reception array. Further, the radar system includes a set of waveguides configured to couple each array to a port.Type: GrantFiled: October 16, 2020Date of Patent: April 4, 2023Assignee: Waymo LLCInventors: Jamal Izadian, Russell Smith, Timothy Campbell, Adam Brown
-
Publication number: 20230017983Abstract: Example embodiments relate to radar reflection filtering using a vehicle sensor system. A computing device may detect a first object in radar data from a radar unit coupled to a vehicle and, responsive to determining that information corresponding to the first object is unavailable from other vehicle sensors, use the radar data to determine a position and a velocity for the first object relative to the radar unit. The computing device may also detect a second object aligned with a vector extending between the radar unit and the first object. Based on a geometric relationship between the vehicle, the first object, and the second object, the computing device may determine that the first object is a self-reflection of the vehicle caused at least in part by the second object and control the vehicle based on this determination.Type: ApplicationFiled: July 19, 2021Publication date: January 19, 2023Inventors: Clayton Kunz, Timothy Campbell
-
Patent number: 11531353Abstract: Examples relating to vehicle velocity calculation using radar technology are described. An example method performed by a computing system may involve, while a vehicle is moving on a road, receiving, from two or more radar sensors mounted at different locations on the vehicle, radar data representative of an environment of the vehicle. The method may involve, based on the data, detecting at least one scatterer in the environment. The method may involve making a determination of a likelihood that the at least one scatterer is stationary with respect to the vehicle. The method may involve, based on the determination being that the likelihood is at least equal to a predefined confidence threshold, calculating a velocity of the vehicle based on the data from the sensors. The calculated velocity may include an angular and linear velocity. Further, the method may involve controlling the vehicle based on the calculated velocity.Type: GrantFiled: December 4, 2020Date of Patent: December 20, 2022Assignee: Waymo LLCInventors: L. Donnie Smith, Timothy Campbell
-
Publication number: 20220390550Abstract: Example embodiments relate to methods and systems for implementing radar electronic support measure operations. A vehicle's processing unit may receive information relating to electromagnetic energy radiating in an environment of the vehicle that is detected using a vehicle radar system. The electromagnetic energy originated from one or more external emitters, such as radar signals transmitted by other vehicles. The processing unit may determine a spectrum occupancy representation that indicates spectral regions occupied by the electromagnetic energy and subsequently adjust operation of the vehicle radar system based on the spectrum occupancy representation to reduce or mitigate interference with the external emitters in the vehicle's environment. In some examples, the vehicle radar system may be switched to a passive receive-only mode to measure the electromagnetic energy radiating in the environment from other emitters.Type: ApplicationFiled: November 9, 2020Publication date: December 8, 2022Inventors: Matthew Markel, Timothy Campbell, Alessandro Temil
-
Publication number: 20220365199Abstract: The present disclosure relates to systems and methods that facilitate active sensor systems. An example method includes receiving information indicative of an operating context of a vehicle, wherein at least one Light Detection and Ranging (LIDAR) sensor or at least one radar sensor are coupled to the vehicle. The method also includes selecting, from a plurality of sensor power configurations, a desired sensor power configuration based on the operating context of the vehicle. The method further includes causing at least one of: the at least one LIDAR sensor to emit light pulses according to the desired sensor power configuration or the at least one radar sensor to emit radar energy according to the desired sensor power configuration.Type: ApplicationFiled: July 21, 2022Publication date: November 17, 2022Inventors: Benjamin Ingram, Edward McCloskey, Timothy Campbell, Pierre-Yves Droz
-
Patent number: 11460569Abstract: Example embodiments described herein involve techniques for orthogonal Doppler coding for a radar system. An example method may involve causing, by a computing system coupled to a vehicle, a radar unit to transmit a plurality of radar signals into an environment of the vehicle using a two-dimensional (2D) transmission antenna array, wherein the radar unit is configured to use time division multiple access (TDMA) to isolate transmit channels along a horizontal direction of the 2D transmission antenna array and Doppler coding to isolate transmit channels along a vertical direction of the 2D transmission antenna array. The method may further involve receiving, by the computing system and from the radar unit, radar reflections corresponding to the plurality of radar signals, determining information representative of the environment based on the radar reflections, and providing control instructions to the vehicle based on the information representative of the environment.Type: GrantFiled: December 28, 2020Date of Patent: October 4, 2022Assignee: Waymo LLCInventors: Timothy Campbell, Matthew Markel
-
Patent number: 11408991Abstract: The present disclosure relates to systems and methods that facilitate active sensor systems. An example method includes receiving information indicative of an operating context of a vehicle, wherein at least one Light Detection and Ranging (LIDAR) sensor or at least one radar sensor are coupled to the vehicle. The method also includes selecting, from a plurality of sensor power configurations, a desired sensor power configuration based on the operating context of the vehicle. The method further includes causing at least one of: the at least one LIDAR sensor to emit light pulses according to the desired sensor power configuration or the at least one radar sensor to emit radar energy according to the desired sensor power configuration.Type: GrantFiled: December 3, 2020Date of Patent: August 9, 2022Assignee: Waymo LLCInventors: Benjamin Ingram, Edward McCloskey, Timothy Campbell, Pierre-Yves Droz