Patents by Inventor Timothy Creazzo

Timothy Creazzo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9097846
    Abstract: A waveguide coupler includes a first waveguide and a second waveguide. The waveguide coupler also includes a connecting waveguide disposed between the first waveguide and the second waveguide. The connecting waveguide includes a first material having a first index of refraction and a second material having a second index of refraction higher than the first index of refraction.
    Type: Grant
    Filed: August 28, 2012
    Date of Patent: August 4, 2015
    Assignee: Skorpios Technologies, Inc.
    Inventors: Amit Mizrahi, Timothy Creazzo, Elton Marchena, Derek Van Orden, Stephen B. Krasulick
  • Publication number: 20150123157
    Abstract: A method of fabricating a composite semiconductor structure includes providing an SOI substrate including a plurality of silicon-based devices, providing a compound semiconductor substrate including a plurality of photonic devices, and dicing the compound semiconductor substrate to provide a plurality of photonic dies. Each die includes one or more of the plurality of photonics devices. The method also includes providing an assembly substrate having a base layer and a device layer including a plurality of CMOS devices, mounting the plurality of photonic dies on predetermined portions of the assembly substrate, and aligning the SOI substrate and the assembly substrate. The method further includes joining the SOI substrate and the assembly substrate to form a composite substrate structure and removing at least the base layer of the assembly substrate from the composite substrate structure.
    Type: Application
    Filed: September 10, 2014
    Publication date: May 7, 2015
    Applicant: Skorpios Technologies, Inc.
    Inventors: John Dallesasse, Stephen B. Krasulick, Timothy Creazzo, Elton Marchena
  • Publication number: 20150097210
    Abstract: A method for fabricating a composite device comprises providing a platform, providing a chip, and bonding the chip to the platform. The platform has a base layer and a device layer above the base layer. An opening in the device layer exposes a portion of the base layer. The chip is bonded to the portion of the base layer exposed by the opening in the device layer. A portion of the chip extends above the platform and is removed.
    Type: Application
    Filed: October 8, 2014
    Publication date: April 9, 2015
    Applicant: Skorpios Technologies, Inc.
    Inventors: Stephen B. Krasulick, John Dallesasse, Amit Mizrahi, Timothy Creazzo, Elton Marchena, John Y. Spann
  • Publication number: 20150099318
    Abstract: A method for fabricating a photonic composite device for splitting functionality across materials comprises providing a composite device having a platform and a chip bonded in the platform. The chip is processed comprising patterning, etching, deposition, and/or other processing steps while the chip is bonded to the platform. The chip is used as a gain medium and the platform is at least partially made of silicon.
    Type: Application
    Filed: October 8, 2014
    Publication date: April 9, 2015
    Applicant: Skorpios Technologies, Inc.
    Inventors: Stephen B. Krasulick, John Dallesasse, Amit Mizrahi, Timothy Creazzo, Elton Marchena, John Y. Spann
  • Publication number: 20150097211
    Abstract: A composite photonic device comprises a platform, a chip, and a contact layer. The platform comprises silicon. The chip is made of a III-V material. The contact layer has indentations to help control a flow of solder during bonding of the platform with the chip. In some embodiments, pedestals are placed under an optical path to prevent solder from flowing between the chip and the platform at the optical path.
    Type: Application
    Filed: October 8, 2014
    Publication date: April 9, 2015
    Applicant: Skorpios Technologies, Inc.
    Inventors: Stephen B. Krasulick, John Dallesasse, Amit Mizrahi, Timothy Creazzo, Elton Marchena, John Y. Spann
  • Publication number: 20150098676
    Abstract: A composite device for splitting photonic functionality across two or more materials comprises a platform, a chip, and a bond securing the chip to the platform. The platform comprises a base layer and a device layer. The device layer comprises silicon and has an opening exposing a portion of the base layer. The chip, a III-V material, comprises an active region (e.g., gain medium for a laser). The chip is bonded to the portion of the base layer exposed by the opening such that the active region of the chip is aligned with the device layer of the platform. A coating hermitically seals the chip in the platform.
    Type: Application
    Filed: October 8, 2014
    Publication date: April 9, 2015
    Applicant: Skorpios Technologies, Inc.
    Inventors: Stephen B. Krasulick, John Dallesasse, Amit Mizrahi, Timothy Creazzo, Elton Marchena, John Y. Spann
  • Publication number: 20140319656
    Abstract: A method of fabricating a composite semiconductor structure is provided. Pedestals are formed in a recess of a first substrate. A second substrate is then placed within the recess in contact with the pedestals. The pedestals have a predetermined height so that a device layer within the second substrate aligns with a waveguide of the first substrate, where the waveguide extends from an inner wall of the recess.
    Type: Application
    Filed: April 25, 2014
    Publication date: October 30, 2014
    Applicant: Skorpios Technologies, Inc.
    Inventors: Elton Marchena, John Y. Spann, Timothy Creazzo, Stephen B. Krasulick, Amit Mizrahi
  • Patent number: 8859394
    Abstract: A method of fabricating a composite semiconductor structure includes providing an SOI substrate including a plurality of silicon-based devices, providing a compound semiconductor substrate including a plurality of photonic devices, and dicing the compound semiconductor substrate to provide a plurality of photonic dies. Each die includes one or more of the plurality of photonics devices. The method also includes providing an assembly substrate having a base layer and a device layer including a plurality of CMOS devices, mounting the plurality of photonic dies on predetermined portions of the assembly substrate, and aligning the SOI substrate and the assembly substrate. The method further includes joining the SOI substrate and the assembly substrate to form a composite substrate structure and removing at least the base layer of the assembly substrate from the composite substrate structure.
    Type: Grant
    Filed: January 18, 2013
    Date of Patent: October 14, 2014
    Assignee: Skorpios Technologies, Inc.
    Inventors: John Dallesasse, Stephen B. Krasulick, Timothy Creazzo, Elton Marchena
  • Publication number: 20140112669
    Abstract: An optical network unit includes a transmit/receive port and a silicon waveguide optically coupled to the transmit/receive port. The optical network unit also includes a tunable filter coupled to the silicon waveguide and providing a first output for a first frequency band and a second output for a second frequency band. The optical network unit further includes a polarization diverse receiver coupled to the tunable filter and a laser coupled to the tunable filter.
    Type: Application
    Filed: October 18, 2013
    Publication date: April 24, 2014
    Inventors: Amit Mizrahi, Robert J. Stone, Stephen B. Krasulick, Timothy Creazzo
  • Publication number: 20140037286
    Abstract: A method of operating a BPSK modulator includes receiving an RF signal at the BPSK modulator and splitting the RF signal into a first portion and a second portion that is inverted with respect to the first portion. The method also includes receiving the first portion at a first arm of the BPSK modulator, receiving the second portion at a second arm of the BPSK modulator, applying a first tone to the first arm of the BPSK modulator, and applying a second tone to the second arm of the BPSK modulator. The method further includes measuring a power associated with an output of the BPSK modulator and adjusting a phase applied to at least one of the first arm of the BPSK modulator or the second arm of the BPSK modulator in response to the measured power.
    Type: Application
    Filed: August 5, 2013
    Publication date: February 6, 2014
    Applicant: Skorpios Technologies, Inc.
    Inventors: Stephen B. Krasulick, Timothy Creazzo, Kalpit Jha, Elton Marchena, Amit Mizrahi
  • Publication number: 20130243362
    Abstract: A reflective structure includes an input/output port and an optical splitter coupled to the input/output port. The optical splitter has a first branch and a second branch. The reflective structure also includes a first resonant cavity optically coupled to the first branch of the optical splitter. The first resonant cavity comprises a first set of reflectors and a first waveguide region disposed between the first set of reflectors. The reflective structures further includes a second resonant cavity optically coupled to the second branch of the optical splitter. The second resonant cavity comprises a second set of reflectors and a second waveguide region disposed between the second set of reflectors.
    Type: Application
    Filed: September 10, 2012
    Publication date: September 19, 2013
    Applicant: Skorpios Technologies, Inc.
    Inventors: Derek Van Orden, Amit Mizrahi, Timothy Creazzo, Stephen B. Krasulick
  • Publication number: 20130235890
    Abstract: A tunable laser includes a substrate comprising a silicon material, a gain medium coupled to the substrate, wherein the gain medium includes a compound semiconductor material, and a waveguide disposed in the substrate and optically coupled to the gain medium. The tunable laser also includes a first wavelength selective element characterized by a first reflectance spectrum and disposed in the substrate and a carrier-based phase modulator optically coupled to the first wavelength selective element. The tunable laser further includes a second wavelength selective element characterized by a second reflectance spectrum and disposed in the substrate, an optical coupler disposed in the substrate and optically coupled to the first wavelength selective element, the second wavelength selective element, and the waveguide, and an output mirror.
    Type: Application
    Filed: September 6, 2012
    Publication date: September 12, 2013
    Applicant: Skorpios Technologies, Inc.
    Inventors: Timothy Creazzo, Amit Mizrahi, Stephen B. Krasulick
  • Publication number: 20130230285
    Abstract: An optical fiber package includes a housing having a plurality of walls. One of the walls includes a via passing therethrough. The optical fiber package also includes an optical fiber mounted in the housing and extending through at least a portion of the via and a connector. The connector has a first portion mounted in the via. The optical fiber passes through the first portion. The connector also has a second portion extending outside the housing and including a collar operable to receive a male protrusion of an external fiber.
    Type: Application
    Filed: February 14, 2013
    Publication date: September 5, 2013
    Applicant: SKORPIOS TECHNOLOGIES, INC.
    Inventors: Trever Skilnick, Timothy Creazzo
  • Publication number: 20130051727
    Abstract: A waveguide coupler includes a first waveguide and a second waveguide. The waveguide coupler also includes a connecting waveguide disposed between the first waveguide and the second waveguide. The connecting waveguide includes a first material having a first index of refraction and a second material having a second index of refraction higher than the first index of refraction.
    Type: Application
    Filed: August 28, 2012
    Publication date: February 28, 2013
    Applicant: Skorpios Technologies, Inc.
    Inventors: Amit Mizrahi, Timothy Creazzo, Elton Marchena, Derek Van Orden, Stephen B. Krasulick