Patents by Inventor Timothy D. Price

Timothy D. Price has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230338899
    Abstract: A contactor system includes a plurality of contactor panels. Each contactor panel includes a frame member and a membrane array adapted to be received within the frame member. The membrane array defines a first end portion, a second end portion, and a plurality of hollow fibers. The contactor system also includes a first manifold in selective fluid communication with the first end portion of the membrane array of each contactor panel. The contactor system further includes a second manifold in direct fluid communication with the second end portion of the membrane array of each contactor panel. The contactor system includes a controller configured to provide selective fluid communication between the first manifold and the first end portion of the membrane array of each contactor panel.
    Type: Application
    Filed: May 4, 2021
    Publication date: October 26, 2023
    Inventors: Ravi Kolakaluri, Vadim N. Savvateev, Gareth P. Taylor, Shannon S. Le Blanc, Dian Zheng, Brinda B. Badri, Paul A. Nielsen, Amitava Sengupta, Michael C. Flom, Timothy D. Price, Catherine A. Leatherdale
  • Publication number: 20230182081
    Abstract: A contactor module for a contactor panel includes a frame member and a contactor media coupled to the frame member. The contractor module defines a first side and a second side. The contactor media includes at least one first membrane array including a plurality of first hollow fibers extending along a first fiber axis. The at least one first membrane array defines a first axis. Further, the contactor module includes at least one second membrane array including a plurality of second hollow fibers extending along a second fiber axis. The at least one second membrane array defines a second axis. The at least one first membrane array and the at least one second membrane array is disposed such that a first inclination angle is defined between the first axis and the second axis. Moreover, the first inclination angle is greater than zero degree and less than 180 degrees.
    Type: Application
    Filed: May 19, 2021
    Publication date: June 15, 2023
    Inventors: Gareth P. Taylor, Timothy D. Price, Scott A. Baum, Ravi Kolakaluri, Vadim N. Savvateev, Shannon S. Le Blanc, Dian Zheng, Brinda B. Badri, Paul A. Nielsen, Amitava Sengupta, Michael C. Flom, Catherine A. Leatherdale
  • Patent number: 10610831
    Abstract: A membrane contactor includes: a cap has an internally beveled surface and a cap port; a cup body has an externally beveled surface in sealing engagement with the internally beveled surface, a side port on a side of the cup body and an end port located on an end of the cup body; and a membrane cartridge is located within the cup body, is sealed to an open end of the cup body, and is in sealed fluid communication with the end port. A method of making a membrane contactor includes the steps of: sealingly mating a perforated center of a membrane contactor with the end port of a cup body; sealingly joining an end of the membrane cartridge adjacent an open end of the cup body; and sealingly joining a beveled surface of the cap to a beveled external surface of the cup body.
    Type: Grant
    Filed: June 20, 2016
    Date of Patent: April 7, 2020
    Assignee: 3M Innovative Properties Company
    Inventors: Gareth P. Taylor, Timothy D. Price, Ronnie E. Queen
  • Publication number: 20180093226
    Abstract: A membrane contactor includes: a cap has an internally beveled surface and a cap port; a cup body has an externally beveled surface in sealing engagement with the internally beveled surface, a side port on a side of the cup body and an end port located on an end of the cup body; and a membrane cartridge is located within the cup body, is sealed to an open end of the cup body, and is in sealed fluid communication with the end port. A method of making a membrane contactor includes the steps of: sealingly mating a perforated center of a membrane contactor with the end port of a cup body; sealingly joining an end of the membrane cartridge adjacent an open end of the cup body; and sealingly joining a beveled surface of the cap to a beveled external surface of the cup body.
    Type: Application
    Filed: June 20, 2016
    Publication date: April 5, 2018
    Inventors: Gareth P. Taylor, Timothy D. Price, Ronnie E. Queen
  • Patent number: 9541302
    Abstract: Porous membrane contactors and/or their methods of manufacture and/or use are provided. In at least selected embodiments, the present invention is directed to flat panel hollow fiber or flat sheet membrane contactors and/or their methods of manufacture and/or use. In at least certain particular embodiments, the present invention is directed to hollow fiber array flat panel contactors, contactor systems, and/or their methods of manufacture and/or use. In at least particular possibly preferred embodiments, the contactor is adapted for placement in an air duct (such as an HVAC ductwork) and has a rectangular frame or housing enclosing at least one wound hollow fiber array or membrane bundle.
    Type: Grant
    Filed: June 1, 2012
    Date of Patent: January 10, 2017
    Assignee: 3M Innovative Properties Company
    Inventors: Gareth P. Taylor, Timothy D. Price, Amitava Sengupta, Paul A. Peterson, C. Glen Wensley
  • Patent number: 8690994
    Abstract: In at least certain embodiments, the present invention is directed to contactors, modules, components, systems, and/or methods of manufacture, and/or methods of use including degassing liquids. In at least particular possibly preferred embodiments, the contactor or module is integrally potted, has planar, disc shaped end caps, and a cylindrical housing or shell receiving and supporting a membrane structure. In at least particular possibly preferred embodiments, each of the planar disc shaped end caps has a central opening therein adapted to receive a liquid end port or nozzle, another opening therein adapted to receive a gas end port or threaded pipe, and is held in place in the housing or shell by at least one retaining element such as a retaining or locking ring. In at least particular possibly preferred embodiments, the integrally potted membrane structure is potted in place in the housing or shell by an inverted potting process involving the use of a removable plunger or plug to recess the potting.
    Type: Grant
    Filed: May 16, 2013
    Date of Patent: April 8, 2014
    Assignee: Celgard LLC
    Inventors: Gareth P. Taylor, Elmer Wayne Bouldin, Jr., Timothy D. Price, Tony R. Vido
  • Publication number: 20130247760
    Abstract: In at least certain embodiments, the present invention is directed to contactors, modules, components, systems, and/or methods of manufacture, and/or methods of use including degassing liquids. In at least particular possibly preferred embodiments, the contactor or module is integrally potted, has planar, disc shaped end caps, and a cylindrical housing or shell receiving and supporting a membrane structure. In at least particular possibly preferred embodiments, each of the planar disc shaped end caps has a central opening therein adapted to receive a liquid end port or nozzle, another opening therein adapted to receive a gas end port or threaded pipe, and is held in place in the housing or shell by at least one retaining element such as a retaining or locking ring. In at least particular possibly preferred embodiments, the integrally potted membrane structure is potted in place in the housing or shell by an inverted potting process involving the use of a removable plunger or plug to recess the potting.
    Type: Application
    Filed: May 16, 2013
    Publication date: September 26, 2013
    Inventors: Gareth P. Taylor, Elmer Wayne Bouldin, JR., Timothy D. Price, Tony R. Vido
  • Patent number: 8449659
    Abstract: The present invention is directed to contactors, modules, components, systems, and/or methods of manufacture, and/or methods of use including degassing liquids. The contactor or module is integrally potted, has planar, disc shaped end caps, and a cylindrical housing or shell receiving and supporting a membrane structure. Each of the planar disc shaped end caps has a central opening therein adapted to receive a liquid end port or nozzle and is held in place in the housing or shell by at least one retaining element. The integrally potted membrane structure is preferably potted in place in the housing or shell by an inverted potting process involving the use of a removable plunger or plug to recess the potting.
    Type: Grant
    Filed: September 28, 2011
    Date of Patent: May 28, 2013
    Assignee: Celgard LLC
    Inventors: Gareth P. Taylor, Elmer Wayne Bouldin, Jr., Timothy D. Price, Tony R. Vido
  • Publication number: 20120304862
    Abstract: Porous membrane contactors and/or their methods of manufacture and/or use are provided. In at least selected embodiments, the present invention is directed to flat panel hollow fiber or flat sheet membrane contactors and/or their methods of manufacture and/or use. In at least certain particular embodiments, the present invention is directed to hollow fiber array flat panel contactors, contactor systems, and/or their methods of manufacture and/or use. In at least particular possibly preferred embodiments, the contactor is adapted for placement in an air duct (such as an HVAC ductwork) and has a rectangular frame or housing enclosing at least one wound hollow fiber array or membrane bundle.
    Type: Application
    Filed: June 1, 2012
    Publication date: December 6, 2012
    Inventors: Gareth P. Taylor, Timothy D. Price, Amitava Sengupta, Paul A. Peterson, C. Glen Wensley
  • Publication number: 20120247337
    Abstract: The present invention is directed to contactors, modules, components, systems, and/or methods of manufacture, and/or methods of use including degassing liquids. The contactor or module is integrally potted, has planar, disc shaped end caps, and a cylindrical housing or shell receiving and supporting a membrane structure. Each of the planar disc shaped end caps has a central opening therein adapted to receive a liquid end port or nozzle and is held in place in the housing or shell by at least one retaining element. The integrally potted membrane structure is preferably potted in place in the housing or shell by an inverted potting process involving the use of a removable plunger or plug to recess the potting.
    Type: Application
    Filed: September 28, 2011
    Publication date: October 4, 2012
    Inventors: Gareth P. Taylor, Elmer Wayne Bouldin, JR., Timothy D. Price, Tony R. Vido
  • Patent number: 7803274
    Abstract: A contained liquid membrane contactor includes a perforated center tube, first and second membrane mats each with a first and a second end both being open, four tube sheets affixing the membrane mats to the center tube, a shell sealed to the tube sheets, and two end caps. The first end of the first mat extends a first distance beyond the second end of the second mat. The first end of the first mat is open at the first tube sheet while the first end of the second mat is open at the second tube sheet. The second end of the first mat is between the second and fourth tube sheets and the second end of the second mat is between the first and third tube sheets.
    Type: Grant
    Filed: April 30, 2008
    Date of Patent: September 28, 2010
    Assignee: Celgard LLC
    Inventors: Gareth Peter Taylor, Amitava Sengupta, Timothy D. Price, Linus I. Holstein, Tony R. Vido
  • Patent number: 7641795
    Abstract: A membrane contactor includes a housing, a stack of membrane mats, and a cap. The housing has a closed end and an open end. The closed end includes an outlet port. The cap is united to the open end and includes an inlet port. A stack of membrane mats is within the housing stacked substantially perpendicular to the longitudinal axis of the housing. Each membrane mat has a plurality of hollow fiber members. A potting material bonds the membrane mats to each other and simultaneously bonds one end of the stack to the closed end and bonds the other end of the stack to the cap. The potting material forms an internal chamber and at least one external chamber within the housing. The hollow fiber members extend through the potting material from the internal chamber into the external chambers. The inlet port and the outlet port are in communication with the internal chamber. At least one side port is in communication with the external chambers.
    Type: Grant
    Filed: June 5, 2006
    Date of Patent: January 5, 2010
    Assignee: Celgard LLC
    Inventors: Gareth P. Taylor, Timothy D. Price
  • Patent number: 7628916
    Abstract: A hollow fiber cartridge includes a stack of hollow fiber mats. The stack has a major axis and two end faces. Each mat is substantially perpendicular to the axis. An end cap is united to each end face.
    Type: Grant
    Filed: January 26, 2005
    Date of Patent: December 8, 2009
    Assignee: Celgard LLC
    Inventors: Gareth P. Taylor, Robert H. Carroll, Tony R. Vido, Timothy D. Price
  • Publication number: 20090272684
    Abstract: A contained liquid membrane contactor includes a perforated center tube, first and second membrane mats each with a first and a second end both being open, four tube sheets affixing the membrane mats to the center tube, a shell sealed to the tube sheets, and two end caps. The first end of the first mat extends a first distance beyond the second end of the second mat. The first end of the first mat is open at the first tube sheet while the first end of the second mat is open at the second tube sheet. The second end of the first mat is between the second and fourth tube sheets and the second end of the second mat is between the first and third tube sheets. The shell has a first port between the first and third tube sheets communicating with the second end of the second mat and a second port between the second and fourth tube sheets communicating with the second end of the first mat.
    Type: Application
    Filed: April 30, 2008
    Publication date: November 5, 2009
    Inventors: Gareth Peter Taylor, Amitava Sengupta, Timothy D. Price, Linus I. Holstein, Tony R. Vido
  • Publication number: 20070278145
    Abstract: A membrane contactor includes a housing, a stack of membrane mats, and a cap. The housing has a closed end and an open end. The closed end includes an outlet port. The cap is united to the open end and includes an inlet port. A stack of membrane mats is within the housing stacked substantially perpendicular to the longitudinal axis of the housing. Each membrane mat has a plurality of hollow fiber members. A potting material bonds the membrane mats to each other and simultaneously bonds one end of the stack to the closed end and bonds the other end of the stack to the cap. The potting material forms an internal chamber and at least one external chamber within the housing. The hollow fiber members extend through the potting material from the internal chamber into the external chambers. The inlet port and the outlet port are in communication with the internal chamber. At least one side port is in communication with the external chambers.
    Type: Application
    Filed: June 5, 2006
    Publication date: December 6, 2007
    Inventors: Gareth P. Taylor, Timothy D. Price
  • Patent number: 7025085
    Abstract: A poppet-type check valve for controlling fluid flow, and including a valve housing having an interior and first and second ports therein communicating with the interior of the valve housing for permitting fluid flow from an upstream side to a downstream side thereof. At least one valve assembly is disposed within the interior of the valve housing for controlling the fluid flow therethrough. The valve assembly includes a valve seat positioned in the interior of the valve housing and a seal retainer positioned in the interior of the valve housing downstream from the valve seat and mounted on a stem. The seal retainer and the stem are axially moveable away from the valve seat in response to fluid flow in a downstream direction at a predetermined flow rate, and axially moveable towards and into sealing engagement with the valve seat in response to a downstream fluid flow at a flow rate less than the predetermined flow rate.
    Type: Grant
    Filed: March 9, 2004
    Date of Patent: April 11, 2006
    Assignee: Conbraco Industries, Inc.
    Inventors: Timothy D. Price, Robert V. Funderburk, Gareth P. Taylor
  • Patent number: 6343618
    Abstract: A swing check valve for controlling fluid flow, including a valve housing having a port for fluid flow therethrough with a removable cover for accessing an interior of the valve housing. A valve assembly is positioned within the interior of the valve housing for controlling the fluid flow through the valve housing. The valve assembly includes a valve seat in fluid communication with the port and a clapper mounted in the valve housing on a pivotally-mounted rocker arm and moveable between an open position responsive to fluid flow in a flow direction and a closed position sealed against the valve seat responsive to fluid flow in an opposite, backflow direction. A spring is captured in the valve housing by the removable cover without attachment to either the cover or valve housing, and normally urges the clapper into the closed position sealed against the valve seat.
    Type: Grant
    Filed: February 28, 2000
    Date of Patent: February 5, 2002
    Assignee: Conbraco Industries, Inc.
    Inventors: Greg L. Britt, Danny S. Meyer, Timothy D. Price, Robert V. Funderburk
  • Patent number: 5498079
    Abstract: A temperature transmitter includes a temperature probe, such as an RTD or thermocouple, and a transmitter housing. Electrical circuitry in the transmitter housing is adapted for coupling to the temperature probe and providing an output related to a sensed temperature. The temperature housing has a first side for coupling to the temperature probe and a second side which carried a plurality of electrical connections electrically connected to the circuitry carried in the transmitter housing. An elongated recess on an outer surface of the first side of the transmitter housing channels electrical wiring which connects to the temperature probe in a direction away from the temperature probe and toward the electrical connections carried on the second side of the transmitter housing.
    Type: Grant
    Filed: December 23, 1994
    Date of Patent: March 12, 1996
    Assignee: Rosemount Inc.
    Inventor: Timothy D. Price
  • Patent number: 5451939
    Abstract: A transmitter (1) is connected to a source of DC voltage via supply wires (55) and to a sensor (53) having definable characteristics for electrical measurement of a physical variable, the transmitter having a housing (3) having terminals (18) for connection to the supply wires and containing transmitter circuitry (14, 27, 29) operable to modulate current in the supply wires to thereby transmit a signal representative of the sensed value of the physical variable; the transmitter circuitry including a microprocessor (27) and a memory for containing data defining a transfer characteristic to be operated by the microprocessor so that the signal is representative of the sensed value or of a predetermined function of the sensed value for said characteristics of the sensor; the transmitter further including an inductive loop for receiving signals relating to said data defining the transfer characteristic from an electronic programming device (20) and circuitry to load said data into the memory in response to the sig
    Type: Grant
    Filed: March 29, 1993
    Date of Patent: September 19, 1995
    Assignee: Fisher-Rosemount Limited
    Inventor: Timothy D. Price
  • Patent number: D366218
    Type: Grant
    Filed: December 23, 1994
    Date of Patent: January 16, 1996
    Assignee: Rosemount Inc.
    Inventors: Timothy D. Price, Paul A. Freeman