Patents by Inventor Timothy E. Durham

Timothy E. Durham has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7598918
    Abstract: The tubular slot-mode antenna includes an array of slot antenna units carried by a tubular substrate, e.g. a cylindrical substrate, and each slot antenna unit having a pair of patch antenna elements arranged in laterally spaced apart relation about at least one central feed position. Adjacent patch antenna elements of adjacent slot-mode antenna units have respective spaced apart edge portions with predetermined shapes and relative positioning to provide increased capacitive coupling therebetween. The array of slot-mode antenna units may define a plurality of ring-shaped slots coaxial with an axis of the tubular substrate, and a feed arrangement may be coupled thereto to operate the array of slot-mode antenna units in an endfire mode.
    Type: Grant
    Filed: January 21, 2008
    Date of Patent: October 6, 2009
    Assignee: Harris Corporation
    Inventors: Timothy E. Durham, Griffin K. Gothard, Anthony Mark Jones, Jay Kralovec, Stephen R. Landers, Sean Ortiz, Chris Snyder, Ralph Trosa
  • Patent number: 7420519
    Abstract: The slot-mode antenna includes an array of slot antenna units carried by a substrate, and each slot antenna unit having a pair of patch antenna elements arranged in laterally spaced apart relation about at least one central feed position. Adjacent patch antenna elements of adjacent slot-mode antenna units have respective spaced apart edge portions with predetermined shapes and relative positioning to provide increased capacitive coupling therebetween. The spaced apart edge portions may be continuously or periodically interdigitated to provide the increased capacitive coupling therebetween.
    Type: Grant
    Filed: December 16, 2005
    Date of Patent: September 2, 2008
    Assignee: Harris Corporation
    Inventors: Timothy E. Durham, Anthony M. Jones, Sean C. Ortiz, Chris Synder, Griffin K. Gothard
  • Patent number: 7408520
    Abstract: The slot-mode antenna includes an array of slot antenna units carried by a substrate, and each slot antenna unit has a pair of patch antenna elements arranged in laterally spaced apart relation about at least one central feed position. Adjacent patch antenna elements of adjacent slot-mode antenna units include respective spaced apart edge portions defining gaps therebetween, and a capacitive coupling layer or plates overlap the respective spaced apart edge portions to provide increased capacitive coupling therebetween. The capacitive coupling layer may include continuous or periodic capacitive coupling plates along each gap defined by the respective spaced apart edge portions.
    Type: Grant
    Filed: December 16, 2005
    Date of Patent: August 5, 2008
    Assignee: Harris Corporation
    Inventors: Timothy E. Durham, Anthony M. Jones, Sean C. Ortiz, Chris Synder, Griffin K. Gothard
  • Patent number: 7408519
    Abstract: The dual-polarization antenna with a slot pattern can produce vertical polarized energy near the horizon and can scan to near grazing angles. The dual-polarization, slot-mode antenna includes an array of dual-polarization, slot-mode, antenna units carried by a substrate, and each dual-polarization, slot-mode antenna unit having at least four patch antenna elements arranged in spaced apart relation about a central feed position. Adjacent patch antenna elements of adjacent dual-polarization, slot-mode antenna units have respective spaced apart edge portions defining gaps therebetween. Capacitive coupling plates are adjacent the gaps and overlap the respective spaced apart edge portions to provide increased capacitive coupling therebetween.
    Type: Grant
    Filed: December 16, 2005
    Date of Patent: August 5, 2008
    Assignee: Harris Corporation
    Inventors: Timothy E. Durham, Anthony M. Jones, Griffin K. Gothard, Sean Ortiz
  • Publication number: 20080150820
    Abstract: The tubular slot-mode antenna includes an array of slot antenna units carried by a tubular substrate, e.g. a cylindrical substrate, and each slot antenna unit having a pair of patch antenna elements arranged in laterally spaced apart relation about at least one central feed position. Adjacent patch antenna elements of adjacent slot-mode antenna units have respective spaced apart edge portions with predetermined shapes and relative positioning to provide increased capacitive coupling therebetween. The array of slot-mode antenna units may define a plurality of ring-shaped slots coaxial with an axis of the tubular substrate, and a feed arrangement may be coupled thereto to operate the array of slot-mode antenna units in an endfire mode.
    Type: Application
    Filed: January 21, 2008
    Publication date: June 26, 2008
    Applicant: Harris Corporation
    Inventors: Timothy E. Durham, Griffin K. Gothard, Anthony Mark Jones, Jay Kralovec, Stephen R. Landers, Sean Ortiz, Chris Snyder, Ralph Trosa
  • Patent number: 7336238
    Abstract: Method for controlling an input impedance of an antenna (100). The method can include the steps of coupling RF energy from an input RF transmission line (106) to an antenna radiating element (102) through an aperture (112) defined in a ground plane (110). For example, the aperture (112) can be a slot and the radiating element (102) can be a patch type element. The input impedance can thereafter be controlled by selectively varying a volume or a position of a conductive fluid (128) disposed in a predetermined region between the RF transmission line and the antenna radiating element. The volume of conductive fluid (128) can be automatically varied in response to at least one control signal (132).
    Type: Grant
    Filed: July 20, 2006
    Date of Patent: February 26, 2008
    Assignee: Harris Corporation
    Inventors: James J. Rawnick, Timothy E. Durham, Stephen B. Brown
  • Patent number: 7221322
    Abstract: The dual-polarization, slot-mode antenna includes an array of dual-polarization, slot-mode, antenna units carried by a substrate, with each dual-polarization, slot-mode antenna unit having at least four patch antenna elements arranged in spaced apart relation about a central feed position. Adjacent patch antenna elements of adjacent dual-polarization, slot-mode antenna units include respective spaced apart edge portions having predetermined shapes and relative positioning to provide increased capacitive coupling therebetween. The respective spaced apart edge portions may be continuously or periodically interdigitated to provide the increased capacitive coupling therebetween.
    Type: Grant
    Filed: December 14, 2005
    Date of Patent: May 22, 2007
    Assignee: Harris Corporation
    Inventors: Timothy E. Durham, Anthony M. Jones, Griffin K. Gothard, Sean Ortiz
  • Patent number: 7084827
    Abstract: An antenna includes a substrate, and an array of dipole antenna elements on the substrate. Each dipole antenna element includes a medial feed portion and a pair of legs extending outwardly therefrom. Adjacent legs of adjacent dipole antenna elements include respective spaced apart end portions with impedance coupling therebetween. An impedance matching layer is adjacent a side of the array of dipole antenna elements opposite the substrate. The impedance matching layer includes an array of spaced apart conductive elements.
    Type: Grant
    Filed: February 7, 2005
    Date of Patent: August 1, 2006
    Assignee: Harris Corporation
    Inventors: Roger W. Strange, Anthony M. Jones, Timothy E. Durham, Randy E. Boozer, Dieter L. Gum
  • Patent number: 7084828
    Abstract: Method for controlling an input impedance of an antenna (100). The method can include the steps of coupling RF energy from an input RF transmission line (106) to an antenna radiating element (102) through an aperture (112) defined in a ground plane (110). For example, the aperture (112) can be a slot and the radiating element (102) can be a patch type element. The input impedance can thereafter be controlled by selectively varying a volume or a position of a conductive fluid (128) disposed in a predetermined region between the RF transmission line and the antenna radiating element. The volume of conductive fluid (128) can be automatically varied in response to at least one control signal (132).
    Type: Grant
    Filed: August 27, 2003
    Date of Patent: August 1, 2006
    Assignee: Harris Corporation
    Inventors: James J. Rawnick, Timothy E. Durham, Stephen B. Brown
  • Patent number: 7009570
    Abstract: A phased array antenna includes a substrate, and an array of dipole antenna elements are on the substrate. Each dipole antenna element includes a medial feed portion, and a pair of legs extending outwardly therefrom. Each dipole antenna element further includes a passive load, and a switch connected thereto for selectively coupling the passive load to the medial feed portion so that the dipole antenna element selectively functions as an absorber for absorbing received signals while the passive load dissipates energy associated therewith.
    Type: Grant
    Filed: August 4, 2003
    Date of Patent: March 7, 2006
    Assignee: Harris Corporation
    Inventors: Timothy E. Durham, St phen B. Brown, Griffin K. Gothard
  • Patent number: 6999044
    Abstract: A reflector antenna system may include an arc-shaped antenna reflector defining a first antenna beam, and a phased array antenna positioned in the first antenna beam including first and second arrays of antenna elements coupled together in back-to-back relation. The first array may face the antenna reflector, and the second array may face away from it. A controller switchable between a reflecting mode and a direct mode may be connected to the arrays. The controller, when in the reflecting mode, may cause back-to-back pairs of first antenna elements from the arrays to define a feed-through zone for the first antenna beam, and cause second antenna elements in the first array to define a first active zone for the first antenna beam. Furthermore, when in the direct mode, the controller may cause antenna elements in the second array to define a second active zone for a second antenna beam.
    Type: Grant
    Filed: April 21, 2004
    Date of Patent: February 14, 2006
    Assignee: Harris Corporation
    Inventors: Timothy E. Durham, James J. Rawnick
  • Patent number: 6982679
    Abstract: An antenna feed system includes a plurality of RF horn antennas (201, 202) for operating on a plurality of RF frequency bands. A first one of the feed horns (202) can have a boresight axis and is configured for operating at a first one of the frequency bands. A second one of the feed horns (201) is positioned coaxially within the first one of the feed horns (202) and is configured for operating at least at a second one of the frequency bands. Further, the first one of the feed horns (202) is a corrugated horn that has a plurality of corrugations (204) formed on an interior surface defining a profile. The profile extends substantially from a throat (205) of the first feed horn and along a tapered portion of the first feed horn. The profile substantially minimizes an interaction of the corrugations with the second feed horn.
    Type: Grant
    Filed: October 27, 2003
    Date of Patent: January 3, 2006
    Assignee: Harris Corporation
    Inventors: Jay A. Kralovec, Griffin K. Gothard, Timothy E. Durham
  • Patent number: 6977623
    Abstract: A phased array antenna includes a substrate, and a patterned conductive layer is on the substrate. The patterned conductive layer defines a plurality of slotted dipole antenna elements each having a medial feed portion associated therewith. Each slotted dipole antenna element includes a pair of slotted legs extending outwardly from the medial feed portion. Pairs of adjacent slotted legs of adjacent slotted dipole antenna elements include respective spaced apart end portions having predetermined shapes and relative positioning to provide increased inductive coupling between the adjacent slotted dipole antenna elements.
    Type: Grant
    Filed: February 17, 2004
    Date of Patent: December 20, 2005
    Assignee: Harris Corporation
    Inventors: Timothy E. Durham, Anthony M. Jones, Sean Ortiz, Griffin K. Gothard
  • Patent number: 6965355
    Abstract: A reflector antenna system may include at least one antenna reflector having an arcuate shape and defining an antenna beam, a feed device spaced apart from the at least one antenna reflector, and a phased array antenna positioned in the antenna beam between the at least one antenna reflector and the feed device. More particularly, the phased array antenna may include a substrate and a plurality of back-to-back pairs of first antenna elements carried by the substrate and configured for defining at least one feed-through zone for the antenna beam. The phased array antenna may further include a plurality of back-to-back pairs of second antenna elements carried by the substrate and defining at least one active beamsteering zone for the antenna beam.
    Type: Grant
    Filed: April 21, 2004
    Date of Patent: November 15, 2005
    Assignee: Harris Corporation
    Inventors: Timothy E. Durham, James J. Rawnick
  • Patent number: 6958738
    Abstract: A reflector antenna system may include at least one antenna reflector having an arcuate shape and defining an antenna beam, and a phased array antenna positioned in the antenna beam. More particularly, the phased array antenna may include a substrate and a plurality of back-to-back pairs of first antenna elements carried by the substrate and configured for defining at least one feed-through zone for the antenna beam. Moreover, the phased array antenna may further include a plurality of second antenna elements carried by the substrate and defining at least one active zone for the antenna beam.
    Type: Grant
    Filed: April 21, 2004
    Date of Patent: October 25, 2005
    Assignee: Harris Corporation
    Inventors: Timothy E. Durham, James J. Rawnick
  • Patent number: 6956532
    Abstract: A multiband phased array antenna includes a substrate, and dipole element arrays extending outwardly from an imaginary center point on the substrate. Each dipole element array includes dipole antenna elements arranged in end-to-end relation and having a dipole size different than a dipole size of dipole antenna elements of at least one other dipole element array. A ground plane is adjacent the dipole element arrays, and a spacing between the dipole element arrays and the ground plane is different between the dipole element arrays having different size dipole antenna elements. The ground plane has a plateau shape for providing the different spacing between the dipole element arrays.
    Type: Grant
    Filed: November 6, 2003
    Date of Patent: October 18, 2005
    Assignee: Harris Corporation
    Inventors: Timothy E. Durham, Mark Vanstrum, Anthony M. Jones, Griffin K. Gothard
  • Patent number: 6954179
    Abstract: A phased array antenna includes a substrate, and dipole element arrays extending outwardly from an imaginary center point on the substrate. Each dipole element array includes dipole antenna elements arranged in an end-to-end relation and has different dipole sizes for dipole antenna elements in a direction extending outwardly from the imaginary center point. The different spacing between the ground plane and the dipole element arrays increases from the imaginary center point towards an edge of the substrate.
    Type: Grant
    Filed: November 6, 2003
    Date of Patent: October 11, 2005
    Assignee: Harris Corporation
    Inventors: Timothy E. Durham, Griffin K. Gothard, Anthony M. Jones
  • Patent number: 6943748
    Abstract: A phased array antenna includes a substrate, and dipole element arrays extending in concentric rings about an imaginary center point on the substrate. Each dipole element array includes dipole antenna elements arranged in an end-to-end relation and having a dipole size different than a dipole size of dipole antenna elements of at least one other dipole element array. A ground plane is adjacent the dipole element arrays, and a spacing between the dipole element arrays and the ground plane is different between the dipole element arrays having different size dipole antenna elements.
    Type: Grant
    Filed: November 6, 2003
    Date of Patent: September 13, 2005
    Assignee: Harris Corporation
    Inventors: Timothy E. Durham, Griffin K. Gothard, Anthony M. Jones
  • Patent number: 6943743
    Abstract: A redirecting feedthrough lens antenna system may include first and second phased array antennas coupled together in back-to-back relation. More particularly, the first and second phased array antennas may include respective first and second arrays of dipole antenna elements thereon, wherein each dipole antenna element may include a medial feed portion and a pair of legs extending outwardly therefrom. The system may also include a respective phase shifter connected between each pair of back-to-back dipole antenna elements of the first and second dipole antenna arrays. Furthermore, a controller may be included for cooperating with the phase shifters to cause a signal received by the first phased array antenna at a first angle to be transmitted from the second phased array antenna at a redirected second angle different from the first angle.
    Type: Grant
    Filed: April 21, 2004
    Date of Patent: September 13, 2005
    Assignee: Harris Corporation
    Inventors: Timothy E. Durham, James J. Rawnick
  • Patent number: 6937201
    Abstract: A multi-band ring focus antenna system includes a main reflector (408) that is operable at a plurality spectrally offset frequency bands. A first feed (301, 403) includes a first feed horn (301) and a first sub-reflector (403), which are positioned spaced apart from each other at respective locations along a boresight axis of the main reflector. The locations are selected so that the first feed horn and the first sub-reflector share a commonly located first phase center (401). A second feed (302, 404) designed for operation on a second RF frequency band includes a second feed horn (302) and a second sub-reflector (404), each positioned at a location along the boresight axis of the main reflector so that they share a commonly located second phase center.
    Type: Grant
    Filed: November 7, 2003
    Date of Patent: August 30, 2005
    Assignee: Harris Corporation
    Inventors: Griffin K. Gothard, Jay A. Kralovec, Sean C. Ortiz, Timothy E. Durham