Patents by Inventor Timothy Eagan

Timothy Eagan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10557902
    Abstract: Radio frequency (RF) shields used with magnetic resonance imaging (MRI) apparatus may experience gradient field induced eddy currents and RF field induced eddy currents. These eddy currents can cause the RF shield to heat up at an undesirable rate. RF shields are designed to have a desired degree of RF shielding and a desired heating attribute. Design goals for RF shields include gradient field transparency and RF field opacity, both of which can be influenced by eddy currents. Example methods identify a gradient field that will induce eddy currents and identify an RF field that will induce eddy currents. If a region on the RF shield is identified where the desired heating attribute will not be achieved, then a pattern of axial cuts and azimuthal cuts can be made in the RF shield to reduce gradient eddy current heating in the RF shield while maintaining desired RF shielding.
    Type: Grant
    Filed: April 13, 2015
    Date of Patent: February 11, 2020
    Assignee: Case Western Reserve University
    Inventors: Robert W. Brown, Yong Wu, Zhen Yao, Shmaryu Shvartsman, Thomas Chmielewski, Timothy Eagan
  • Publication number: 20150212174
    Abstract: Radio frequency (RF) shields used with magnetic resonance imaging (MRI) apparatus may experience gradient field induced eddy currents and RF field induced eddy currents. These eddy currents can cause the RF shield to heat up at an undesirable rate. RF shields are designed to have a desired degree of RF shielding and a desired heating attribute. Design goals for RF shields include gradient field transparency and RF field opacity, both of which can be influenced by eddy currents. Example methods identify a gradient field that will induce eddy currents and identify an RF field that will induce eddy currents. If a region on the RF shield is identified where the desired heating attribute will not be achieved, then a pattern of axial cuts and azimuthal cuts can be made in the RF shield to reduce gradient eddy current heating in the RF shield while maintaining desired RF shielding.
    Type: Application
    Filed: April 13, 2015
    Publication date: July 30, 2015
    Inventors: Robert W. Brown, Yong Wu, Zhen Yao, Shmaryu Shvartsman, Thomas Chmielewski, Timothy Eagan
  • Patent number: 9013185
    Abstract: Radio frequency (RF) shields used with magnetic resonance imaging (MRI) apparatus may experience gradient field induced eddy currents and RF field induced eddy currents. These eddy currents can cause the RF shield to heat up at an undesirable rate. RF shields are designed to have a desired degree of RF shielding and a desired heating attribute. Design goals for RF shields include gradient field transparency and RF field opacity, both of which can be influenced by eddy currents. Example methods identify a gradient field that will induce eddy currents and identify an RF field that will induce eddy currents. If a region on the RF shield is identified where the desired heating attribute will not be achieved, then a pattern of axial cuts and azimuthal cuts can be made in the RF shield to reduce gradient eddy current heating in the RF shield while maintaining desired RF shielding.
    Type: Grant
    Filed: February 29, 2012
    Date of Patent: April 21, 2015
    Inventors: Robert W. Brown, Yong Wu, Zhen Yao, Shmaryu Shvarstsman, Thomas Chmielewski, Timothy Eagan
  • Publication number: 20120229141
    Abstract: Radio frequency (RF) shields used with magnetic resonance imaging (MRI) apparatus may experience gradient field induced eddy currents and RF field induced eddy currents. These eddy currents can cause the RF shield to heat up at an undesirable rate. RF shields are designed to have a desired degree of RF shielding and a desired heating attribute. Design goals for RF shields include gradient field transparency and RF field opacity, both of which can be influenced by eddy currents. Example methods identify a gradient field that will induce eddy currents and identify an RF field that will induce eddy currents. If a region on the RF shield is identified where the desired heating attribute will not be achieved, then a pattern of axial cuts and azimuthal cuts can be made in the RF shield to reduce gradient eddy current heating in the RF shield while maintaining desired RF shielding.
    Type: Application
    Filed: February 29, 2012
    Publication date: September 13, 2012
    Inventors: Robert W. Brown, Yong Wu, Zhen Yao, Shmaryu Shvartsman, Thomas Chmielewski, Timothy Eagan
  • Patent number: 7180291
    Abstract: A birdcage coil (16) used in conjunction with a magnetic resonance imaging apparatus includes a first conductive loop (81, 581), a second conductive loop (82, 582), and a plurality of first conductor rungs (80, 580) disposed between the first and second conductive loops. A third conductor (83, 83?, 583) is coupled to the second conductive loop at resonance frequencies, such as by second conductor rungs (84, 84?, 584). The birdcage coil also includes switches (590) for switching the birdcage coil at least among: 1) an RF transmit mode to operate as an RF transmit coil; and 2) an RF receive mode to operate as an RF receive coil.
    Type: Grant
    Filed: November 25, 2003
    Date of Patent: February 20, 2007
    Assignee: Koninklijke Philips Electronics N.V.
    Inventors: Thomas Chmielewski, James A. Flock, Timothy Eagan
  • Publication number: 20060033497
    Abstract: A birdcage coil (16) used in conjunction with a magnetic resonance imaging apparatus includes a first conductive loop (81, 581), a second conductive loop (82, 582), and a plurality of first conductor rungs (80, 580) disposed between the first and second conductive loops. A third conductor (83, 83?, 583) is coupled to the second conductive loop at resonance frequencies, such as by second conductor rungs (84, 84?, 584). The birdcage coil also includes switches (590) for switching the birdcage coil at least among: 1) an RF transmit mode to operate as an RF transmit coil; and 2) an RF receive mode to operate as an RF receive coil.
    Type: Application
    Filed: November 25, 2003
    Publication date: February 16, 2006
    Inventors: Thomas Chmielewski, James Flock, Timothy Eagan
  • Publication number: 20050046422
    Abstract: The present invention provides an apparatus for reducing acoustic noise in a magnetic resonance imaging device including passive shielding located outside the actively shielded gradient winding elements in order to reduce the magnitude of fields that spread outside the gradient coil assembly in unwanted directions and interact with the magnet cryostat or other metallic magnet parts, inducing eddy currents that cause consequent acoustic noise. The passive shielding elements are conducting layers located on the outer radius of the cylindrical gradient coil assembly in a cylindrical magnet system, conducting layers located at the ends of the gradient coil assembly in a cylindrical magnet system, and conducting layers located inside the actively shielded gradient winding inner elements in a cylindrical magnet system. The passive shielding could also be located on separate structures that are vibrationally isolated from the magnet cryostat.
    Type: Application
    Filed: August 25, 2004
    Publication date: March 3, 2005
    Inventors: William Edelstein, Tesfaye Kidane, Victor Taracilla, Tanvir Baig, Timothy Eagan, Robert Brown