Patents by Inventor Timothy Francis DECKER

Timothy Francis DECKER has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10648937
    Abstract: A method for nondestructive inspection of ceramic structures present as either a ceramic matrix composite structure or a ceramic based coating. Such non-metallic structures are used to provide thermal protection or weight reduction or both to aircraft and their components. The nonmetallic structure is scanned with an electromagnetic pulse in the range of 200 GHz to 4 THz. The electromagnetic pulse includes a plurality of frequencies within the Terahertz range and is not restricted to a single designated frequency. The frequency range is sensitive to changes in impedances and refractive index within the structure. After the electromagnetic pulse passes through the nonmetallic structure, it may be evaluated for changes in impedance in the nonmetallic structure at different locations, and, when present, whether the changes in impedance impact the ability of the structure to perform the function for which it was designed.
    Type: Grant
    Filed: October 27, 2016
    Date of Patent: May 12, 2020
    Assignee: General Electric Company
    Inventors: Russell Craig Baucke, Glen David Hilderbrand, Timothy Francis Decker, Benjamin Reid Crowgey
  • Publication number: 20180120246
    Abstract: A method for nondestructive inspection of ceramic structures present as either a ceramic matrix composite structure or a ceramic based coating. Such non-metallic structures are used to provide thermal protection or weight reduction or both to aircraft and their components. The nonmetallic structure is scanned with an electromagnetic pulse in the range of 200 GHz to 4 THz. The electromagnetic pulse includes a plurality of frequencies within the Terahertz range and is not restricted to a single designated frequency. The frequency range is sensitive to changes in impedances and refractive index within the structure. After the electromagnetic pulse passes through the nonmetallic structure, it may be evaluated for changes in impedance in the nonmetallic structure at different locations, and, when present, whether the changes in impedance impact the ability of the structure to perform the function for which it was designed.
    Type: Application
    Filed: October 27, 2016
    Publication date: May 3, 2018
    Inventors: Russell Craig BAUCKE, Glen David HILDERBRAND, Timothy Francis DECKER, Benjamin Reid CROWGEY