Patents by Inventor Timothy G. Laske
Timothy G. Laske has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20240423524Abstract: The present invention relates to a method, device, and system for improved mapping and/or ablation of a tissue. The device may generally include an elongate body and a distal assembly affixed to the elongate body that includes a treatment electrode having a conductive mapping region and a selectively conductive ablation region that is conductive of high-frequency current and substantially non-conductive of low-frequency current. Alternatively, the device may generally include a treatment electrode having a conductive mapping or ablation region and a region that is coated with an electrically insulated but thermally conductive layer.Type: ApplicationFiled: September 4, 2024Publication date: December 26, 2024Inventors: Mark T. Stewart, Mark Allen Benscoter, Jon Virgil Evans, Timothy G. Laske, Gonzalo Martinez
-
Publication number: 20240423523Abstract: A computer-implemented method includes storing location data for at least one invasive electrode that is movable within a patient's body. The method also includes storing electrophysiological measurement data representing the electrophysiological signals measured at the outer surface of a patient's body by body surface electrodes and within the patient's body by the at least one invasive electrode. The method also includes storing geometry data representing anatomy of the patient spatially, and locations of the respective body surface electrodes and the at least one invasive electrode in three-dimensional space. The geometry data for the at least one invasive electrode can vary based on movement of the at least one invasive electrode within the patient's body. The method also includes reconstructing electrophysiological signals on a surface of interest within the patient's body based on the electrophysiological measurement data and the geometry data.Type: ApplicationFiled: September 6, 2024Publication date: December 26, 2024Inventors: Timothy G. LASKE, Qingguo ZENG, QING LOU
-
Patent number: 12102436Abstract: The present invention relates to a method, device, and system for improved mapping and/or ablation of a tissue. The device may generally include an elongate body and a distal assembly affixed to the elongate body that includes a treatment electrode having a conductive mapping region and a selectively conductive ablation region that is conductive of high-frequency current and substantially non-conductive of low-frequency current. Alternatively, the device may generally include a treatment electrode having a conductive mapping or ablation region and a region that is coated with an electrically insulated but thermally conductive layer.Type: GrantFiled: February 11, 2021Date of Patent: October 1, 2024Assignee: Medtronic Ablation Frontiers LLCInventors: Mark T. Stewart, Mark Allen Benscoter, Jon Virgil Evans, Timothy G. Laske, Gonzalo Martinez
-
Patent number: 12089939Abstract: A computer-implemented method includes storing location data for at least one invasive electrode that is movable within a patient's body. The method also includes storing electrophysiological measurement data representing the electrophysiological signals measured at the outer surface of a patient's body by body surface electrodes and within the patient's body by the at least one invasive electrode. The method also includes storing geometry data representing anatomy of the patient spatially, and locations of the respective body surface electrodes and the at least one invasive electrode in three-dimensional space. The geometry data for the at least one invasive electrode can vary based on movement of the at least one invasive electrode within the patient's body. The method also includes reconstructing electrophysiological signals on a surface of interest within the patient's body based on the electrophysiological measurement data and the geometry data.Type: GrantFiled: September 28, 2022Date of Patent: September 17, 2024Assignee: CARDIOINSIGHT TECHNOLOGIES INC.Inventors: Timothy G. Laske, Qingguo Zeng, Qing Lou
-
Publication number: 20240016603Abstract: A stented valve including a generally tubular stent structure that has a longitudinal axis, first and second opposite ends, a plurality of commissure support structures spaced from the first and second ends and extending generally parallel to the longitudinal axis, at least one structural wire positioned between each two adjacent commissure support structures, and at least one wing portion extending from two adjacent commissure support structures and toward one of the first and second ends of the stent structure. The stented valve further includes a valve structure attached within the generally tubular stent structure to the commissure support structures.Type: ApplicationFiled: September 27, 2023Publication date: January 18, 2024Inventors: Charles Tabor, Carol E. Eberhardt, Timothy G. Laske, Timothy R. Ryan, Joseph C. Morrow, Tammy Y. Tam, Brian A. Glynn, Anne L. Brody Rubin, Michael J. Tuchek
-
Publication number: 20230414276Abstract: A method and a pulsed electric field (PEF) ablation instrument are provided. According to one aspect, a method in a PFA generator includes receiving electrical responses for each of at least one non-therapeutic waveform. The process also includes determining an electric field distribution based at least in part on the received electrical responses. The process further includes selecting a non-therapeutic waveform that produces an electric field distribution that satisfies criteria. The process also includes mapping the selected non-therapeutic waveform to an ablative waveform.Type: ApplicationFiled: June 21, 2023Publication date: December 28, 2023Inventors: Timothy G. Laske, Qingguo Zeng, Qing Lou, Mark T. Stewart, Brian T. Howard, Anthony W. Rorvick, Gregory S. Brumfield
-
Publication number: 20230414277Abstract: A medical device includes an elongate body, an expandable treatment element, a plurality of flexible shafts, and a plurality of electrodes. The elongate body has a proximal portion and a distal portion opposite the proximal portion. The expandable treatment element is coupled to the elongate body to receive a fluid and, in some examples, is anchored to the plurality of flexible shafts with a plurality of retention elements. In some examples, each flexible shaft of the plurality of flexible shafts has a braided configuration. Each electrode of the plurality of electrodes is attached and electrically coupled to a respective flexible shaft of the plurality of flexible shafts.Type: ApplicationFiled: June 21, 2023Publication date: December 28, 2023Inventors: Brian J. Kelly, Gavin J. Kenny, Brian T. Howard, Timothy G. Laske, Andrzej M. Malewicz, Mark T. Stewart
-
Publication number: 20230355301Abstract: An example system for use in ablating target tissue includes memory configured to store anatomical and/or physiological information of a patient and processing circuitry communicatively coupled to the memory. The processing circuitry is configured to, based on the anatomical information and/or the physiological information, determine ablation parameters, the ablation parameters including a suggested positioning of at least energy delivery element of at least one catheter and/or an amount of energy to be delivered via the at least one energy delivery element to the target tissue during ablation. The processing circuitry is configured to output, for display, a representation of at least one of a suggested positioning of the at least one energy delivery element during the ablation, a representation of the target tissue, or a representation of the predicted tissue volume that will be ablated after delivery of ablation energy.Type: ApplicationFiled: April 11, 2023Publication date: November 9, 2023Inventors: Mary A. Beckman, Heather L. O'Connell, Timothy G. Laske, Mark T. Stewart, Brian T. Howard, Lars M. Mattison, Megan M. Schmidt, Sarah E. Ahlberg
-
Patent number: 11786367Abstract: A stented valve including a generally tubular stent structure that has a longitudinal axis, first and second opposite ends, a plurality of commissure support structures spaced from the first and second ends and extending generally parallel to the longitudinal axis, at least one structural wire positioned between each two adjacent commissure support structures, and at least one wing portion extending from two adjacent commissure support structures and toward one of the first and second ends of the stent structure. The stented valve further includes a valve structure attached within the generally tubular stent structure to the commissure support structures.Type: GrantFiled: October 9, 2020Date of Patent: October 17, 2023Assignee: MEDTRONIC, INC.Inventors: Charles Tabor, Carol E. Eberhardt, Timothy G. Laske, Timothy R. Ryan, Joseph C. Morrow, Tammy Y. Tam, Brian A. Glynn, Anne L. Brody Rubin, Michael J. Tuchek
-
Publication number: 20230321446Abstract: An example method includes establishing a communications link between an electrophysiology (EP) monitoring system and an implantable medical device (IMD). IMD electrical data is received at the monitoring system via the communications link. The IMD electrical data may be synchronized with EP measurement data to provide synchronized electrical data based on timing of a synchronization signal sensed by an IMD electrode and/or EP electrodes. The method also includes computing reconstructed electrical signals for locations on a surface of interest within the patient's body based on the synchronized electrical data and geometry data. The geometry data represents locations of the EP electrodes, a location of the IMD electrode within the patient's body and the surface of interest.Type: ApplicationFiled: May 16, 2023Publication date: October 12, 2023Inventors: William E. ROWLAND, Timothy G. LASKE, Qing LOU, Qingguo ZENG
-
Publication number: 20230310072Abstract: A method and system for directed pulsed electric field (PEF) ablation are disclosed. In one aspect, an irreversible electroporation (IRE) system includes processing circuitry configured to select a first set of electrodes positioned to produce a first electric field in a first direction in a region of tissue of a patient, and select a second set of electrodes positioned to produce a second electric field in a second direction in the region of tissue. The processing circuitry is configured to transmit a first IRE pulse to the first set of electrodes to cause emission of the first electric field and transmit a second IRE pulse to the second set of electrodes to cause emission of the second electric field. The first IRE pulse and the second IRE pulse are transmitted by the processing circuitry to control an electric field gradient along a path within the region of tissue.Type: ApplicationFiled: March 27, 2023Publication date: October 5, 2023Inventors: Mark T. Stewart, Brian T. Howard, Timothy G. Laske
-
Publication number: 20230310871Abstract: Implantable medical device including a pulsed-voltage generator and one or more implantable electrical leads. In one example, the implantable medical device supports the defibrillator and ablation modalities characterized by different respective sets of waveform parameters, such as the pulse amplitude and width. In some examples, the implantable medical device also supports a pacing modality. The electrodes used for the different modalities are variously selected from a plurality of electrodes located in distal portions of the implantable electrical leads and on the exterior surface of the implantable device box. An electronic controller of the implantable medical device is wirelessly programmable to appropriately control, e.g., in a patient-specific manner, operations of the pulsed-voltage generator and transitions between different modalities.Type: ApplicationFiled: April 3, 2023Publication date: October 5, 2023Inventors: Brian T. Howard, Timothy G. Laske, Alexander J. Hill, Anthony W. Rorvick, Robert C. Kowal
-
Patent number: 11744642Abstract: A device, system, and method for optically evaluating and treating or ablating tissue. Specifically, device, system, and method allow for the optical and/or electrical evaluation of tissue at the same location(s) at which ablation or treatment or ablation energy is delivered. This allows for a more accurate evaluation of lesion formation and tissue condition before, during, and/or after a treatment or ablation procedure. In one embodiment, a device for performing a medical procedure includes an elongate body including a proximal portion, a distal portion having a distal end, and a longitudinal axis, and a distal tip electrode at the elongate body distal end, the tip electrode being optically transparent and electrically conductive. The device may also include optical windows in the elongate body aligned with one or more transparent lateral electrodes for optically interrogating tissue and/or for delivering treatment or ablation energy to tissue.Type: GrantFiled: February 1, 2021Date of Patent: September 5, 2023Assignee: Medtronic, Inc.Inventors: Gonzalo Martinez, Timothy G. Laske, Mark T. Stewart
-
Publication number: 20230226361Abstract: A computer-implemented method includes accessing electrophysiological data and generating an electroanatomic map for a surface of interest based on the electrophysiological data acquired during or after application of a first intervention to temporarily perturb electrical properties of a region of interest on or within the patient’s heart. The method also includes determining changes in the map or information derived from the map responsive to application of a first intervention. The first intervention can include including applying a non-lethal energy and/or a bioactive agent to induce or inhibit conduction of electrical activity for the region of interest. The method also includes controlling a second intervention to permanently alter the electrical properties of the region of interest based on the determination indicating a desired change in cardiac electrical activity responsive to the first intervention.Type: ApplicationFiled: November 21, 2022Publication date: July 20, 2023Inventors: Qing LOU, Qingguo ZENG, TIMOTHY G. LASKE
-
Patent number: 11691018Abstract: An example method includes establishing a communications link between an electrophysiology (EP) monitoring system and an implantable medical device (IMD). IMD electrical data is received at the monitoring system via the communications link. The IMD electrical data may be synchronized with EP measurement data to provide synchronized electrical data based on timing of a synchronization signal sensed by an IMD electrode and/or EP electrodes. The method also includes computing reconstructed electrical signals for locations on a surface of interest within the patient's body based on the synchronized electrical data and geometry data. The geometry data represents locations of the EP electrodes, a location of the IMD electrode within the patient's body and the surface of interest.Type: GrantFiled: February 19, 2021Date of Patent: July 4, 2023Assignee: CARDIOINSIGHT TECHNOLOGIES INC.Inventors: William Rowland, Timothy G. Laske, Qing Lou, Qingguo Zeng
-
Publication number: 20230190104Abstract: A computer-implemented method includes identifying respective heartbeat intervals based on electrophysiological data representative of cardiac electrophysiological signals measured over a time interval. The method includes analyzing the cardiac electrophysiological signals over at least a portion of the time interval. The method also includes generating a map on a surface of interest and/or performing automated signal processing based on the cardiac electrophysiological signals for heartbeat intervals, in which the map is generated and/or the automated signal processing is performed automatically responsive to the analysis of the cardiac electrophysiological signals.Type: ApplicationFiled: November 10, 2022Publication date: June 22, 2023Inventors: QINGGUO ZENG, QING LOU, RAHSEAN K. ELLIS, TIMOTHY G. LASKE
-
Publication number: 20230148936Abstract: The present disclosure provides a system that includes an arrangement of body surface electrodes on one or more patches adapted to be placed an outer surface of a patient's body. A computing apparatus includes non-transitory memory to store data and instructions executable by a processor thereof. The data includes anatomical geometry data, electrode geometry data and electrical data. The instructions can be programmed to register the anatomical geometry data and the electrode geometry data to provide co-registered geometry data representing the anatomy of the patient and the locations of the body surface electrodes in a common three-dimensional space. Electrophysiological signals can be reconstructed on a cardiac envelope of the heart based on the co-registered geometry data and the electrical data.Type: ApplicationFiled: September 29, 2022Publication date: May 18, 2023Inventors: Timothy G. LASKE, Kevin D. GOLLON, Qingguo ZENG, Qing LOU
-
Publication number: 20230138492Abstract: A computer-implemented method includes storing location data for at least one invasive electrode that is movable within a patient’s body. The method also includes storing electrophysiological measurement data representing the electrophysiological signals measured at the outer surface of a patient’s body by body surface electrodes and within the patient’s body by the at least one invasive electrode. The method also includes storing geometry data representing anatomy of the patient spatially, and locations of the respective body surface electrodes and the at least one invasive electrode in three-dimensional space. The geometry data for the at least one invasive electrode can vary based on movement of the at least one invasive electrode within the patient’s body. The method also includes reconstructing electrophysiological signals on a surface of interest within the patient’s body based on the electrophysiological measurement data and the geometry data.Type: ApplicationFiled: September 28, 2022Publication date: May 4, 2023Inventors: TIMOTHY G. LASKE, QINGGUO ZENG, QING LOU
-
Publication number: 20230107234Abstract: A compressible and expandable stent assembly for implantation in a body lumen such as a mitral valve, the stent assembly including at least one stent barrel that is shaped and sized so that it allows for normal operation of adjacent heart structures. One or more stent barrels can be included in the stent assembly, where one or more of the stent barrels can include a cylinder with a tapered edge.Type: ApplicationFiled: December 8, 2022Publication date: April 6, 2023Inventors: Thierry Mesana, Timothy G. Laske, Alexander Hill, Timothy Ryan, Allen Tower
-
Publication number: 20230036977Abstract: In an example, a signal segment evaluator can be programmed to evaluate a morphology of at least one electrophysiological signal to identify a signal segment of interest. The morphology of the signal segment of interest can be indicative of an electrophysiological event of a patient during a respective time interval. A reconstruction engine can be programmed to reconstruct electrophysiological signals on a surface of interest within a body of the patient based on the electrophysiological signals measured from an outer surface of the patient and geometry data representing an anatomy of the patient. A map generator can be programmed to generate a map representing the reconstructed electrophysiological signals on the surface of interest for the respective time interval of the signal segment of interest. A target generator can be programmed to identify a target site within the patient's body based on the map for the electrophysiological event.Type: ApplicationFiled: June 14, 2022Publication date: February 2, 2023Inventors: Qingguo Zeng, Timothy G. Laske, Qing Lou