Patents by Inventor Timothy Gallagher

Timothy Gallagher has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10135573
    Abstract: Methods and systems for improved cross polarization rejection and tolerating of coupling between satellite signals may comprise receiving radio frequency (RF) signals on a chip, where the RF signals comprising a desired signal and at least one crosstalk signal. The received RF signals may be down-converted to baseband frequencies, and the down-converted signals are converted to digital signals. Crosstalk may be determined by estimating complex coupling coefficients between the received RF signals utilizing a de-correlation algorithm across a frequency bandwidth comprising the desired and crosstalk signals. The down-converted signals may be low-pass filtered and summed with an output signal from a cancellation filter. The complex coupling coefficients may be determined utilizing the de-correlation algorithm on the summed signals, and may be used to configure the cancellation filter.
    Type: Grant
    Filed: January 25, 2018
    Date of Patent: November 20, 2018
    Assignee: Maxlinear, Inc.
    Inventors: Rajasekhar Pullela, Timothy Gallagher, Glenn Chang
  • Patent number: 10135682
    Abstract: A cable modem termination system (CMTS) may determine, for a plurality of cable modems served by the CMTS, a corresponding plurality of SNR-related metrics. The CMTS may assigning the modems among a plurality of service groups based on the SNR-related metrics. For any one of the modems, the CMTS may configure physical layer communication parameters to be used by the one of the modems based on a SNR-related metric of a service group to which the one of the modems is assigned. The physical layer communication parameters may include one or more of: transmit power, receive sensitivity, timeslot duration, modulation type, modulation order, forward error correction (FEC) type, and FEC code rate. The CMTS and the modems may communicate using orthogonal frequency division multiplexing (OFDM) over a plurality of subcarriers, and the physical layer communication parameters may be determined on a per-subcarrier basis.
    Type: Grant
    Filed: January 9, 2018
    Date of Patent: November 20, 2018
    Assignee: Maxlinear, Inc.
    Inventors: Curtis Ling, Sridhar Ramesh, Timothy Gallagher
  • Publication number: 20180323864
    Abstract: A satellite reception assembly that provides satellite television and/or radio service to a customer premises may comprise a wireless interface via which it can communicate with other satellite reception assemblies. Wireless connections between satellite reception assemblies may be utilized for providing satellite content between different satellite customer premises. Wireless connections between satellite reception assemblies may be utilized for offloading traffic from other network connections.
    Type: Application
    Filed: July 17, 2018
    Publication date: November 8, 2018
    Inventors: Curtis Ling, Timothy Gallagher, Glenn Chang
  • Patent number: 10110299
    Abstract: A satellite dish assembly may comprise a broadcast receive module and a basestation module. The broadcast receive module may be operable to receive a satellite signal, recover media carried in the satellite signal, and output the media. The basestation module may be operable to accept the media output by the broadcast receive module and transmit the media in accordance with one or more wireless protocols. In being conveyed from the broadcast receive module to the basestation, the media content may not traverse any wide area network connection. The one or more wireless protocols may comprise one or more of: a cellular protocol and IEEE 802.11 protocol. The satellite dish assembly may comprise a routing module that may be operable to route data between the broadcast receive module, the basestation, and a gateway.
    Type: Grant
    Filed: July 15, 2016
    Date of Patent: October 23, 2018
    Assignee: Maxlinear, Inc.
    Inventors: Curtis Ling, Timothy Gallagher, Glenn Chang
  • Patent number: 10104572
    Abstract: Methods and systems for optimizing bandwidth utilization in an in-home network may comprise determining usage and/or quality of communication links operating in accordance with first and second communication protocols in a multi-protocol wired and wireless network. Data communication may be routed from a first communication link operating in accordance with the first communication protocol to a second communication link operating in accordance with the second communication protocol, based on the determining. The first communication protocol may comprise a multimedia over cable alliance (MoCA) standard and the second communication protocol may comprise an IEEE 802.11x standard. The determining and routing may be performed by a MoCA network controller. The first communication protocol may comprise an IEEE 802.11x standard and the second communication protocol may comprise a MoCA standard. The rerouting may increase bandwidth usage efficiency and/or data throughput of the network.
    Type: Grant
    Filed: April 2, 2018
    Date of Patent: October 16, 2018
    Assignee: Maxlinear, Inc.
    Inventor: Timothy Gallagher
  • Publication number: 20180295491
    Abstract: A charging device includes an integrated broadband transceiver that is operable to communicate wireless signals at a power level that is below a spurious emissions mask. The wireless signals are communicated over a designated frequency spectrum band via one or more antennas. The wireless signals convey data between the charging device and a communication device via one or more usable channels within the frequency spectrum band utilized by the integrated broadband transceiver. Concurrent with the communicating, charging of the communication device occurs. One or more usable channels within the frequency spectrum band utilized by the integrated broadband transceiver may be detected. The charging and the communication of the wireless signals occurs currently on the same ones or different ones of the one or more antennas. The detected one or more usable channels may be aggregated and utilized for the communication by the integrated broadband transceiver.
    Type: Application
    Filed: June 15, 2018
    Publication date: October 11, 2018
    Inventors: Curtis Ling, Timothy Gallagher
  • Publication number: 20180295038
    Abstract: A receiver is configured to be coupled to a television and data service provider headend via a hybrid fiber coaxial (HFC) network. The receiver comprises front-end circuitry operable to receive a signal that carries a plurality of television and/or data channels, and digitize the received signal to generate a digitized signal. The receiver comprises channelizer circuitry operable to select a first portion of the digitized signal, and select a second portion of the digitized signal. The receiver comprises processing circuitry operable to process the selected second portion of the digitized signal to recover information carried in the plurality of channels. The receiver comprises monitoring circuitry operable to analyze the selected first portion of the digitized signal to measure a characteristic of the received signal; and control the transmission of network management messages back to the headend based on the measured characteristic of the received signal.
    Type: Application
    Filed: June 18, 2018
    Publication date: October 11, 2018
    Inventors: Timothy Gallagher, Patrick Tierney, Jun Huang
  • Patent number: 10097193
    Abstract: Methods and systems for time interleaved analog-to-digital converter timing mismatch calibration and compensation may include receiving an analog signal on a chip, converting the analog signal to a digital signal utilizing a time interleaved analog-to-digital-converter (ADC), and reducing a blocker signal that is generated by timing offsets in the time interleaved ADC by estimating complex coupling coefficients between a desired digital output signal and the blocker signal utilizing a decorrelation algorithm on frequencies within a desired frequency bandwidth. The decorrelation algorithm may comprise a symmetric adaptive decorrelation algorithm. The received analog signal may be generated by a calibration tone generator on the chip. An aliased signal may be summed with an output signal from a multiplier. The complex coupling coefficients may be determined utilizing the decorrelation algorithm on the summed signals.
    Type: Grant
    Filed: November 14, 2017
    Date of Patent: October 9, 2018
    Assignee: Maxlinear, Inc.
    Inventors: Pawandeep Taluja, Mingrui Zhu, Xuefeng Chen, Anand Anandakumar, Sheng Ye, Timothy Gallagher
  • Publication number: 20180287766
    Abstract: Methods and systems for a mixed-mode MoCA network, substantially as illustrated by and/or described in connection with at least one of the figures, as set forth more completely in the claims. For example and without limitation, various aspects of the present disclosure provide methods and systems for controlling communication bandwidth allocation in a mixed-mode mixed-band shared cable network.
    Type: Application
    Filed: June 6, 2018
    Publication date: October 4, 2018
    Inventor: Timothy Gallagher
  • Patent number: 10084494
    Abstract: Methods and systems for crest factor reduction may comprise generating an original waveform, generating a distortion signal by reducing a crest factor of the original waveform, generating an error signal by subtracting out the original waveform from the distortion signal, and generating a conditioned waveform by adding the error signal to the original waveform. The crest factor of the original waveform may be reduced based on spectral mask requirements. The crest factor of the original waveform may be reduced using a limiter. The power amplifier may comprise a programmable gain amplifier (PGA). The distortion signal may be generated based on a PGA model and/or a predistortion model. A signal from an output of the PA may be fed back to the PGA model. The PGA model may be dynamically configured. The crest factor of the original waveform may be reduced in an analog domain and/or a digital domain.
    Type: Grant
    Filed: July 11, 2017
    Date of Patent: September 25, 2018
    Assignee: Maxlinear, Inc.
    Inventors: Ramesh Sridhar, Timothy Gallagher, Shantha Murthy Prem Swaroop, Ali Shahed hagh ghadam
  • Publication number: 20180262955
    Abstract: Methods and systems for providing reduced bandwidth acquisition latency may comprise communicating a reservation request for bandwidth allocation for devices operating under a wired network protocol, where the reservation request may be sent by wired network devices via a wireless network protocol over a wireless network. Bandwidth may be allocated in the wired network for the requesting devices by a network controller. Data may be communicated with the requesting devices via the wired network. The wired network communication protocol may comprise a multimedia over cable alliance (MoCA) standard. The wireless protocol may comprise an IEEE 802.11x standard, a Bluetooth standard, and/or any non-public network protocol. The communication of the reservation request via the wireless protocol may decrease a latency of the wired network. A medium access plan (MAP) may be generated by the network controller based on the reservation request and may comprise a bandwidth allocation for the requesting devices.
    Type: Application
    Filed: May 10, 2018
    Publication date: September 13, 2018
    Inventor: Timothy Gallagher
  • Patent number: 10069514
    Abstract: Methods and systems are provided for low-power decoding. An example system may include one or more storage circuits and a decoder circuit. The decoder circuit may implement a plurality of nodes for use during decoding, including at least one data generating node and at least one data checking node, and the storage circuits may store status information associated with the nodes, the status information indicating when each corresponding node is locked or unlocked. During decoding operations, the decoder circuit may set the status information to lock one or more of the nodes based on one or more locking conditions, and may cease decoding based on one or more ceasing conditions. The decoder circuit may locks a data generating node when a corresponding calculated value meets a particular condition, and may lock a data checking node when all data generating nodes associated with it are locked.
    Type: Grant
    Filed: December 5, 2017
    Date of Patent: September 4, 2018
    Assignee: MAXLINEAR, INC.
    Inventors: Mingrui Zhu, Curtis Ling, Timothy Gallagher
  • Publication number: 20180249445
    Abstract: A WiFi access point (AP) includes a receive radio frequency (RF) front end and a baseband processor that controls operation of the receive RF front end. The RF front end captures signals over a wide spectrum that includes a plurality of WiFi frequency bands (2.4 GHz and 5 GHz) and channelizes one or more WiFi channels from the captured signals. The baseband processor combines a plurality of blocks of WiFi channels to create one or more aggregated WiFi channels. The receive RF front end may be integrated on a first integrated circuit and the baseband processor may be integrated on a second integrated circuit. The first and second integrated circuits may be integrated on a single package. The RF front end and the baseband processor may be integrated on a single integrated circuit. The WiFi access point comprises a routing module that is communicatively coupled to the baseband processor.
    Type: Application
    Filed: April 27, 2018
    Publication date: August 30, 2018
    Inventors: Timothy Gallagher, Curtis Ling, Alan Trerise, Kishore Seendripu
  • Patent number: 10063436
    Abstract: A receiver is configured to be coupled to a television and data service provider headend via a hybrid fiber coaxial (HFC) network. The receiver comprises front-end circuitry operable to receive a signal that carries a plurality of television and/or data channels, and digitize the received signal to generate a digitized signal. The receiver comprises channelizer circuitry operable to select a first portion of the digitized signal, and select a second portion of the digitized signal. The receiver comprises processing circuitry operable to process the selected second portion of the digitized signal to recover information carried in the plurality of channels. The receiver comprises monitoring circuitry operable to analyze the selected first portion of the digitized signal to measure a characteristic of the received signal; and control the transmission of network management messages back to the headend based on the measured characteristic of the received signal.
    Type: Grant
    Filed: November 2, 2017
    Date of Patent: August 28, 2018
    Assignee: Maxlinear, Inc.
    Inventors: Timothy Gallagher, Patrick Tierney, Jun Huang
  • Patent number: 10051406
    Abstract: A charging device includes an integrated broadband transceiver that is operable to communicate wireless signals at a power level that is below a spurious emissions mask. The wireless signals are communicated over a designated frequency spectrum band via one or more antennas. The wireless signals convey data between the charging device and a communication device via one or more usable channels within the frequency spectrum band utilized by the integrated broadband transceiver. Concurrent with the communicating, charging of the communication device occurs. One or more usable channels within the frequency spectrum band utilized by the integrated broadband transceiver may be detected. The charging and the communication of the wireless signals occurs currently on the same ones or different ones of the one or more antennas. The detected one or more usable channels may be aggregated and utilized for the communication by the integrated broadband transceiver.
    Type: Grant
    Filed: December 26, 2012
    Date of Patent: August 14, 2018
    Assignee: Maxlinear, Inc.
    Inventors: Curtis Ling, Timothy Gallagher
  • Publication number: 20180227791
    Abstract: Methods and systems for optimizing bandwidth utilization in an in-home network may comprise determining usage and/or quality of communication links operating in accordance with first and second communication protocols in a multi-protocol wired and wireless network. Data communication may be routed from a first communication link operating in accordance with the first communication protocol to a second communication link operating in accordance with the second communication protocol, based on the determining. The first communication protocol may comprise a multimedia over cable alliance (MoCA) standard and the second communication protocol may comprise an IEEE 802.11x standard. The determining and routing may be performed by a MoCA network controller. The first communication protocol may comprise an IEEE 802.11x standard and the second communication protocol may comprise a MoCA standard. The rerouting may increase bandwidth usage efficiency and/or data throughput of the network.
    Type: Application
    Filed: April 2, 2018
    Publication date: August 9, 2018
    Inventor: Timothy Gallagher
  • Publication number: 20180227045
    Abstract: A satellite reception assembly may comprise a first module operable to demodulate a first one or more channels of a signal output by a direct broadcast satellite (DBS) low noise block downconverter (LNB). The first module may output a signal to a second module which may demodulate a second one or more channels of the signal output by the DBS LNB. The second module may be installed after the satellite reception assembly has been deployed upon a number of clients served by the satellite reception assembly reaching a threshold.
    Type: Application
    Filed: June 15, 2017
    Publication date: August 9, 2018
    Inventors: Curtis Ling, Timothy Gallagher, Glenn Chang
  • Publication number: 20180213181
    Abstract: Systems and methods are provided for communication ultra-high definition (UHD) video. At the transmitter-side, a single packet stream that includes packets corresponding to a plurality of encoded content streams may be generated, and the single packet stream may be split into a plurality of sub-streams. The splitting may include grouping packets corresponding to the single packet stream into a plurality of chunks, each associated with a respective one of the sub-streams; adding handling related information to each of the chunks; and incorporating into at least one packet in a first one of the sub-streams at least some of handling related information associated with a second one of the sub-steams. The sub-streams may then be processed for transmission over a particular physical medium. At the receiver-side, the signals may be received and processed, and the sub-streams may be reconstructed based on processing of the plurality signals.
    Type: Application
    Filed: February 26, 2018
    Publication date: July 26, 2018
    Inventors: Timothy Gallagher, Glenn Delucio, Brijesh Sirpatil
  • Patent number: 10027403
    Abstract: A satellite reception assembly that provides satellite television and/or radio service to a customer premises may comprise a wireless interface via which it can communicate with other satellite reception assemblies. Wireless connections between satellite reception assemblies may be utilized for providing satellite content between different satellite customer premises. Wireless connections between satellite reception assemblies may be utilized for offloading traffic from other network connections.
    Type: Grant
    Filed: September 8, 2017
    Date of Patent: July 17, 2018
    Assignee: Maxlinear, Inc.
    Inventors: Curtis Ling, Timothy Gallagher, Glenn Chang
  • Publication number: 20180191452
    Abstract: A direct broadcast satellite (DBS) reception assembly may comprise an integrated circuit that is configurable between or among a plurality of configurations based on content requested by client devices served by the DBS reception assembly. In a first configuration, multiple satellite frequency bands may be digitized by the integrated circuit as a single wideband signal. In a second configuration, the satellite frequency bands may be digitized by the integrated circuit as a plurality of separate narrowband signals. The integrated circuit may comprise a plurality of receive paths, each of the receive chains comprising a respective one of a plurality of low noise amplifiers and a plurality of analog-to-digital converters.
    Type: Application
    Filed: February 28, 2018
    Publication date: July 5, 2018
    Inventors: Glenn Chang, Raja Pullela, Madhukar Reddy, Timothy Gallagher, Shantha Murthy Prem Swaroop, Curtis Ling, Vamsi Paidi, Wenjian Chen