Patents by Inventor Timothy Gerard Richter

Timothy Gerard Richter has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230150679
    Abstract: Provided in this disclosure is a high voltage distribution system of an electric aircraft. The system includes a power source mechanically connected to an electric aircraft, where the power source is configured to supply power to the electric aircraft. The system also includes a flight component mechanically connected to the electric aircraft. The system also includes a distribution component configured to control the providing of power to and from the power source and the flight component as needed during recharging and/or operation of the electric aircraft.
    Type: Application
    Filed: November 18, 2021
    Publication date: May 18, 2023
    Applicant: BETA AIR, LLC
    Inventors: Timothy Gerard Richter, Sean Donovan
  • Patent number: 11639229
    Abstract: Abstract of the Disclosure: Provided in this disclosure is a high voltage distribution system of an electric aircraft. The system includes a power source mechanically connected to an electric aircraft, where the power source is configured to supply power to the electric aircraft. The system also includes a flight component mechanically connected to the electric aircraft. The system also includes a distribution component configured to control the providing of power to and from the power source and the flight component as needed during recharging and/or operation of the electric aircraft.
    Type: Grant
    Filed: November 18, 2021
    Date of Patent: May 2, 2023
    Assignee: BETA AIR, LLC
    Inventors: Timothy Gerard Richter, Sean Donovan
  • Publication number: 20220404842
    Abstract: Aspects relate to methods and systems for reversionary flight control for an electrical vertical take-off and landing (eVTOL) aircraft. An exemplary system includes a pilot control, a sensor configured to sense and transmit analog control data associated with a pilot interaction with the pilot control, a pilot interface module configured to receive the analog control data, convert the analog control data to digital control data, and transmit digital control, an actuator, and a flight controller. The flight controller may be configured to receive the digital control data, determine a primary command datum as a function of the digital control data, transmit the primary command datum to the actuator, determine that the digital control signal is non-functional, receive the analog control data, determine a reversionary command datum as a function of the analog control data, and transmit the reversionary command datum to the actuator.
    Type: Application
    Filed: May 16, 2022
    Publication date: December 22, 2022
    Applicant: BETA AIR, LLC
    Inventors: Joshua E. Auerbach, Andrew Giroux, Chris Townsend, Timothy Gerard Richter
  • Publication number: 20220371724
    Abstract: A system for distributed pilot control of an aircraft includes a plurality of flight components, an aircraft control located within the aircraft, and an aircraft component attached to a flight component of the plurality of flight components, wherein the aircraft component is configured to receive, from a command sensor attached to the aircraft control, an aircraft command, obtain, from an attitude sensor, an aircraft orientation, receive, as a function of a notification unit, a pilot signal, and command the flight component to produce a response command as a function of the pilot signal.
    Type: Application
    Filed: June 16, 2021
    Publication date: November 24, 2022
    Applicant: BETA AIR, LLC
    Inventors: Andrew Giroux, Timothy Gerard Richter, Nicholas Moy
  • Publication number: 20220363405
    Abstract: Abstract of the Disclosure: In an aspect systems and methods for monitoring health of an electric vertical take-off and landing vehicle include at least a flight component, a first sensor, a computing device, and a pilot display. The first sensor is configured to sense a first characteristic associated with the at least a flight component and transmit the first characteristic. The computing device is communicative with the first sensor, and is configured to: receive the first characteristic, analyze the first characteristic, and determine a condition of the at least a flight component as a function of the first characteristic. The pilot display is communicative with the first sensor and the computing device and is configured to: receive the first characteristic and the condition of the at least a flight component and display the first characteristic and the condition of the at least a flight component.
    Type: Application
    Filed: October 30, 2021
    Publication date: November 17, 2022
    Applicant: BETA AIR, LLC
    Inventors: Joshua E. Auerbach, Andrew Giroux, Chris Townsend, Timothy Gerard Richter, Matthew John Sheppard
  • Publication number: 20220363404
    Abstract: In an aspect systems and methods for monitoring health of an electric vertical take-off and landing vehicle include at least a flight component, a first sensor, a computing device, and a pilot display. The first sensor is configured to sense a first characteristic associated with the at least a flight component and transmit the first characteristic. The computing device is communicative with the first sensor, and is configured to: receive the first characteristic, analyze the first characteristic, and determine a condition of the at least a flight component as a function of the first characteristic. The pilot display is communicative with the first sensor and the computing device and is configured to: receive the first characteristic and the condition of the at least a flight component and display the first characteristic and the condition of the at least a flight component.
    Type: Application
    Filed: May 14, 2021
    Publication date: November 17, 2022
    Applicant: BETA AIR, LLC
    Inventors: Joshua E. Auerbach, Andrew Giroux, Chris Townsend, Timothy Gerard Richter, Matthew John Sheppard
  • Publication number: 20220363377
    Abstract: An electric aircraft having fixed pitch lift includes a plurality of flight components, wherein the plurality of flight components further comprises at least a lift propulsor component, wherein the lift propulsor component comprises a plurality of blades configured at an angle of attack, and a flight controller, wherein the flight controller is configured to calculate a flight element using an intermediate representation, and transmit the flight element to the plurality of flight components.
    Type: Application
    Filed: November 11, 2021
    Publication date: November 17, 2022
    Applicant: BETA AIR, LLC
    Inventors: Joshua E. Auerbach, Andrew Giroux, Chris Townsend, Timothy Gerard Richter, Matthew John Sheppard
  • Publication number: 20220363368
    Abstract: Some aspects relate to systems and methods for fly-by-wire reversionary flight control including a pilot control, a plurality of sensors configured to: sense control data associated with the pilot control, and transmit the control data, a first actuator communicative with the plurality of sensors configured to receive the control data, determine a first command datum as a function of the control data and a distributed control algorithm, and actuate a first control element according to the first command datum.
    Type: Application
    Filed: October 30, 2021
    Publication date: November 17, 2022
    Applicant: BETA AIR, LLC
    Inventors: Joshua E. Auerbach, Andrew Giroux, Chris Townsend, Timothy Gerard Richter, Matthew John Sheppard
  • Publication number: 20220363369
    Abstract: A system of fall back flight control configured for use in aircraft includes an input control configured to receive a pilot input and generate a control datum. System includes a flight controller communicatively coupled to the input control and configured to receive the control datum and generate an output datum. The system includes the actuator having a primary mode in which the actuator is configured to move the at least a portion of the aircraft as a function of the output datum and a fall back mode in which the actuator is configured to move the at least a portion of the aircraft as a function of the control datum. The actuator configured to receive the control datum, receive the output datum, detect a loss of communication with the flight controller, and select the fall back mode as a function of the detection.
    Type: Application
    Filed: July 31, 2022
    Publication date: November 17, 2022
    Applicant: BETA AIR, LLC
    Inventors: Timothy Gerard Richter, Andrew Giroux, Joseph Trovato, Chris Townsend
  • Patent number: 11479344
    Abstract: A system of fall back flight control configured for use in electric aircraft includes an input control configured to receive a pilot input and generate a control datum. System includes a flight controller communicatively coupled to the input control and configured to receive the control datum and generate an output datum. The system includes the actuator having a primary mode in which the actuator is configured to move the at least a portion of the electric aircraft as a function of the output datum and a fall back mode in which the actuator is configured to move the at least a portion of the aircraft as a function of the control datum. The actuator configured to receive the control datum, receive the output datum, detect a loss of communication with the flight controller, and select the fall back mode as a function of the detection.
    Type: Grant
    Filed: February 19, 2021
    Date of Patent: October 25, 2022
    Assignee: BETA AIR, LLC
    Inventors: Timothy Gerard Richter, Andrew Giroux, Joseph Trovato, Chris Townsend
  • Publication number: 20220289364
    Abstract: A system for flight control in electric aircraft includes a flight controller configured to provide an initial vehicle torque signal including a plurality of attitude commands. The system includes a mixer configured to receive the initial vehicle torque signal and a vehicle torque limit, receive prioritization data including a prioritization datum corresponding to each of the plurality of attitude command, determine a plurality of modified attitude commands as a function of the vehicle torque limit, the attitude commands, and the prioritization data, generate, as a function of modified attitude commands, an output torque command including the initial vehicle torque signal adjusted as a function of the vehicle torque limit, generate, as a function of the output torque command, a remaining vehicle torque. The system includes a display, wherein the display is configured to present, to a user, the remaining vehicle torque and the output torque command.
    Type: Application
    Filed: October 29, 2021
    Publication date: September 15, 2022
    Applicant: BETA AIR, LLC
    Inventors: Andrew Giroux, Timothy Gerard Richter, Nicholas Moy
  • Publication number: 20220289363
    Abstract: A system for flight control in electric aircraft includes a flight controller configured to provide an initial vehicle torque signal including a plurality of attitude commands. The system includes a mixer configured to receive the initial vehicle torque signal and a vehicle torque limit, receive prioritization data including a prioritization datum corresponding to each of the plurality of attitude command, determine a plurality of modified attitude commands as a function of the vehicle torque limit, the attitude commands, and the prioritization data, generate, as a function of modified attitude commands, an output torque command including the initial vehicle torque signal adjusted as a function of the vehicle torque limit, generate, as a function of the output torque command, a remaining vehicle torque. The system includes a display, wherein the display is configured to present, to a user, the remaining vehicle torque and the output torque command.
    Type: Application
    Filed: June 16, 2021
    Publication date: September 15, 2022
    Applicant: BETA AIR, LLC
    Inventors: Andrew Giroux, Timothy Gerard Richter, Nicholas Moy
  • Publication number: 20220266985
    Abstract: A system of fall back flight control configured for use in electric aircraft includes an input control configured to receive a pilot input and generate a control datum. System includes a flight controller communicatively coupled to the input control and configured to receive the control datum and generate an output datum. The system includes the actuator having a primary mode in which the actuator is configured to move the at least a portion of the electric aircraft as a function of the output datum and a fall back mode in which the actuator is configured to move the at least a portion of the aircraft as a function of the control datum. The actuator configured to receive the control datum, receive the output datum, detect a loss of communication with the flight controller, and select the fall back mode as a function of the detection.
    Type: Application
    Filed: February 19, 2021
    Publication date: August 25, 2022
    Applicant: BETA AIR, LLC
    Inventors: Timothy Gerard Richter, Andrew Giroux, Joseph Trovato, Chris Townsend
  • Publication number: 20220266988
    Abstract: A system of fall back flight control configured for use in electric aircraft includes an input control configured to receive a pilot input and generate a control datum. System includes a flight controller communicatively coupled to the input control and configured to receive the control datum and generate an output datum. The system includes the actuator having a primary mode in which the actuator is configured to move the at least a portion of the electric aircraft as a function of the output datum and a fall back mode in which the actuator is configured to move the at least a portion of the aircraft as a function of the control datum. The actuator configured to receive the control datum, receive the output datum, detect a loss of communication with the flight controller, and select the fall back mode as a function of the detection.
    Type: Application
    Filed: July 1, 2021
    Publication date: August 25, 2022
    Applicant: BETA AIR, LLC
    Inventors: Timothy Gerard Richter, Andrew Giroux, Joseph Trovato, Chris Townsend
  • Patent number: 11353890
    Abstract: Aspects relate to methods and systems for reversionary flight control for an electrical vertical take-off and landing (eVTOL) aircraft. An exemplary system includes a pilot control, a sensor configured to sense and transmit analog control data associated with a pilot interaction with the pilot control, a pilot interface module configured to receive the analog control data, convert the analog control data to digital control data, and transmit digital control, an actuator, and a flight controller. The flight controller may be configured to receive the digital control data, determine a primary command datum as a function of the digital control data, transmit the primary command datum to the actuator, determine that the digital control signal is non-functional, receive the analog control data, determine a reversionary command datum as a function of the analog control data, and transmit the reversionary command datum to the actuator.
    Type: Grant
    Filed: June 16, 2021
    Date of Patent: June 7, 2022
    Assignee: BETA AIR, LLC
    Inventors: Joshua E. Auerbach, Andrew Giroux, Chris Townsend, Timothy Gerard Richter
  • Patent number: 11281237
    Abstract: A system for distributed control of an aircraft. The system includes a plurality of flight components, an aircraft control located within the aircraft, and an aircraft component attached to a flight component of the plurality of flight components. The aircraft component is configured to receive, from a command sensor attached to the aircraft control, an aircraft command, obtain, from an attitude sensor, an aircraft orientation, and command the flight component to produce a response command.
    Type: Grant
    Filed: May 18, 2021
    Date of Patent: March 22, 2022
    Assignee: BETA AIR, LLC
    Inventors: Andrew Giroux, Timothy Gerard Richter, Nicholas Moy
  • Patent number: 11208200
    Abstract: Some aspects relate to systems and methods for fly-by-wire reversionary flight control including a pilot control, a plurality of sensors configured to: sense control data associated with the pilot control, and transmit the control data, a first actuator communicative with the plurality of sensors configured to receive the control data, determine a first command datum as a function of the control data and a distributed control algorithm, and actuate a first control element according to the first command datum.
    Type: Grant
    Filed: May 14, 2021
    Date of Patent: December 28, 2021
    Assignee: BETA AIR, LLC
    Inventors: Joshua E Auerbach, Andrew Giroux, Chris Townsend, Timothy Gerard Richter, Matthew John Sheppard
  • Patent number: 11208206
    Abstract: An aircraft for fixed pitch lift includes a fuselage, a plurality of flight components attached to the fuselage, wherein the plurality of flight components further comprises at least a lift propulsor component, wherein the lift propulsor component comprises a plurality of blades configured at a fixed angle of attack, and a pusher component, wherein the pusher component is configured to produce a forward thrust.
    Type: Grant
    Filed: May 17, 2021
    Date of Patent: December 28, 2021
    Assignee: BETA AIR, LLC
    Inventors: Joshua E Auerbach, Andrew Giroux, Chris Townsend, Timothy Gerard Richter, Matthew John Sheppard
  • Patent number: 11142333
    Abstract: A system for flight control in electric aircraft includes a flight controller configured to provide an initial vehicle torque signal including a plurality of attitude commands. The system includes a mixer configured to receive the initial vehicle torque signal and a vehicle torque limit, receive prioritization data including a prioritization datum corresponding to each of the plurality of attitude command, determine a plurality of modified attitude commands as a function of the vehicle torque limit, the attitude commands, and the prioritization data, generate, as a function of modified attitude commands, an output torque command including the initial vehicle torque signal adjusted as a function of the vehicle torque limit, generate, as a function of the output torque command, a remaining vehicle torque. The system includes a display, wherein the display is configured to present, to a user, the remaining vehicle torque and the output torque command.
    Type: Grant
    Filed: March 10, 2021
    Date of Patent: October 12, 2021
    Assignee: BETA AIR, LLC
    Inventors: Timothy Gerard Richter, Andrew Giroux, Nicholas Moy
  • Publication number: 20210313599
    Abstract: A drive circuit comprising a DC bus configured to supply power to a load, a first fuel cell coupled to the DC bus and configured to provide a first power output to the DC bus, and a second fuel cell coupled to the DC bus and configured to provide a second power output to the DC bus supplemental to the first fuel cell. The drive circuit further includes an energy storage device coupled to the DC bus and configured to receive energy from the DC bus when a combined output of the first and second fuel cells is greater than a power demand from a load, and provide energy to the DC bus when the combined output of the first and second fuel cells is less than the power demand from the load.
    Type: Application
    Filed: June 18, 2021
    Publication date: October 7, 2021
    Applicant: General Electric Company
    Inventors: Robert Dean King, Timothy Gerard Richter