Patents by Inventor Timothy Halloran

Timothy Halloran has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11767749
    Abstract: A drilling system configured to reduce friction during slide drilling. The drilling system has a drill string comprising a fluid-driven drill stage such as a mud motor; a variable frequency drive configured to oscillate the drill string via a quill and a sensor array. The sensor array measures the torque applied to the quill and the angular position of the quill. A controller is used to control the variable frequency drive based on the determined applied torque and quill angular position to meet predetermined oscillation turn-around criteria and to reduce the time to reduce the angular velocity of the quill from a maximum rotational speed to zero in an oscillation cycle.
    Type: Grant
    Filed: April 13, 2021
    Date of Patent: September 26, 2023
    Assignee: Ensign Drilling Inc
    Inventors: Jarrod David Chapman, Chiranjit Saha, Sean Timothy Halloran
  • Publication number: 20210324725
    Abstract: A drilling system configured to reduce friction during slide drilling. The drilling system has a drill string comprising a fluid-driven drill stage such as a mud motor; a variable frequency drive configured to oscillate the drill string via a quill and a sensor array. The sensor array measures the torque applied to the quill and the angular position of the quill. A controller is used to control the variable frequency drive based on the determined applied torque and quill angular position to meet predetermined oscillation turn-around criteria and to reduce the time to reduce the angular velocity of the quill from a maximum rotational speed to zero in an oscillation cycle.
    Type: Application
    Filed: April 13, 2021
    Publication date: October 21, 2021
    Inventors: Jarrod David Chapman, Chiranjit Saha, Sean Timothy Halloran
  • Patent number: 8714342
    Abstract: A method for gapping substrates conveyed through a vacuum chamber is disclosed. The method may include positioning an upstream substrate outside the vacuum chamber as a downstream substrate is conveyed within the vacuum chamber, detecting a position of the downstream substrate within the vacuum chamber and conveying the upstream substrate into the vacuum chamber at a conveyance rate greater than a conveyance rate of the downstream substrate to set a gap between the downstream substrate and the upstream substrate.
    Type: Grant
    Filed: March 30, 2012
    Date of Patent: May 6, 2014
    Assignee: First Solar, Inc.
    Inventors: Sean Timothy Halloran, James Victor Schaefer, Frank Sanford Prescott
  • Publication number: 20130306620
    Abstract: A method for controlling a plurality of heaters of a heating system is disclosed. The method may generally include generating control commands for turning on the plurality of heaters during a time period, determining which electrical phase is powering each heater of the plurality of heaters and staggering execution of the control commands across the time period for two or more of the heaters powered by the same electrical phase.
    Type: Application
    Filed: May 21, 2012
    Publication date: November 21, 2013
    Applicant: PRIMESTAR SOLAR, INC.
    Inventors: Sean Timothy Halloran, James Victor Schaefer
  • Publication number: 20130259610
    Abstract: A method for gapping substrates conveyed through a vacuum chamber is disclosed. The method may include positioning an upstream substrate outside the vacuum chamber as a downstream substrate is conveyed within the vacuum chamber, detecting a position of the downstream substrate within the vacuum chamber and conveying the upstream substrate into the vacuum chamber at a conveyance rate greater than a conveyance rate of the downstream substrate to set a gap between the downstream substrate and the upstream substrate.
    Type: Application
    Filed: March 30, 2012
    Publication date: October 3, 2013
    Applicant: PRIMESTAR SOLAR, INC.
    Inventors: Sean Timothy Halloran, James Victor Schaefer, Frank Sanford Prescott
  • Patent number: 8409407
    Abstract: Methods are generally provided for sputtering thin films on individual substrates. Individual substrates can be conveyed into a vacuum chamber to draw a sputtering pressure that is less than about 50 mTorr. Then, the individual substrates can be conveyed into a sputtering chamber and past a planar magnetron continuously sputtering a target by an ionized gas at the sputtering pressure such that a thin film is formed on a surface of the individual substrate. The target is subjected to a high frequency power having a frequency from about 400 kHz to about 4 MHz at power levels of greater than about 1 kW. In one particular embodiment, the method can be generally directed to sputtering thin films on individual substrates defining a surface having a surface area of about 1000 cm2 to about 2500 cm2.
    Type: Grant
    Filed: April 22, 2010
    Date of Patent: April 2, 2013
    Assignee: Primestar Solar, Inc.
    Inventors: Sean Timothy Halloran, Robert Dwayne Gossman, Russell Weldon Black
  • Patent number: 8247741
    Abstract: A system is provided for heating or cooling discrete, linearly conveyed substrates having a gap between a trailing edge of a first substrate and a leading edge of a following substrate in a conveyance direction. The system includes a chamber, and a conveyor operably configured within the chamber to move the substrates through at a conveyance rate. A plurality of individually controlled temperature control units, for example heating or cooling units, are disposed linearly within the chamber along the conveyance direction. A controller is in communication with the temperature control units and is configured to cycle output of the temperature control units from a steady-state temperature output as a function of the spatial position of the conveyed substrates within the chamber relative to the temperature control units so as to decrease temperature variances in the substrates caused by movement of the substrates through the chamber.
    Type: Grant
    Filed: March 24, 2011
    Date of Patent: August 21, 2012
    Assignee: PrimeStar Solar, Inc.
    Inventors: Kevin Michael Pepler, James Joseph Jones, Sean Timothy Halloran
  • Publication number: 20120064657
    Abstract: A system is provided for heating or cooling discrete, linearly conveyed substrates having a gap between a trailing edge of a first substrate and a leading edge of a following substrate in a conveyance direction. The system includes a chamber, and a conveyor operably configured within the chamber to move the substrates through at a conveyance rate. A plurality of individually controlled temperature control units, for example heating or cooling units, are disposed linearly within the chamber along the conveyance direction. A controller is in communication with the temperature control units and is configured to cycle output of the temperature control units from a steady-state temperature output as a function of the spatial position of the conveyed substrates within the chamber relative to the temperature control units so as to decrease temperature variances in the substrates caused by movement of the substrates through the chamber.
    Type: Application
    Filed: March 24, 2011
    Publication date: March 15, 2012
    Applicant: PRIMESTAR SOLAR, INC.
    Inventors: Kevin Michael Pepler, James Joseph Jones, Sean Timothy Halloran
  • Publication number: 20120000765
    Abstract: Methods and systems of arc suppression during RF sputtering of a thin film from a semiconducting target onto a substrate are provided. During sputtering, an alternating current of RF frequency can be applied to a semiconducting target to form a plasma. Upon formation of an arc extending from the target, an arc signature can be detected, where the arc signature is simultaneously defined by decreasing plasma voltage from an initial sputtering plasma voltage to an arc plasma voltage and increasing reflective power from an initial sputtering reflective power to an arc reflective power. Upon identification of the arc signature, the alternating current can be temporarily interrupted to the semiconducting target to suppress the arc extending from the target. Thereafter, the alternating current from the electrical power supply can be reapplied to the semiconducting target.
    Type: Application
    Filed: June 30, 2010
    Publication date: January 5, 2012
    Applicant: PRIMESTAR SOLAR, INC.
    Inventor: Sean Timothy Halloran
  • Publication number: 20120000767
    Abstract: Methods of arc prevention during sputtering of a thin film from a semiconducting target onto a substrate are provided. An alternating current (e.g., having a frequency of about 500 kHz to 15 MHz) can be applied from an electrical power supply to the semiconducting target to form a plasma between the substrate and the semiconducting target. This alternating current can be temporarily interrupted for a time sufficient to sustain the plasma between the substrate and the semiconducting target to inhibit arc formation during sputtering. Sputtering systems are also generally provided for arc prevention during sputtering of a thin film from a semiconducting target onto a substrate.
    Type: Application
    Filed: June 30, 2010
    Publication date: January 5, 2012
    Applicant: PRIMESTAR SOLAR, INC.
    Inventor: Sean Timothy Halloran
  • Publication number: 20110259732
    Abstract: Methods are generally provided for sputtering thin films on individual substrates. Individual substrates can be conveyed into a vacuum chamber to draw a sputtering pressure that is less than about 50 mTorr. Then, the individual substrates can be conveyed into a sputtering chamber and past a planar magnetron continuously sputtering a target by an ionized gas at the sputtering pressure such that a thin film is formed on a surface of the individual substrate. The target is subjected to a high frequency power having a frequency from about 400 kHz to about 4 MHz at power levels of greater than about 1 kW. In one particular embodiment, the method can be generally directed to sputtering thin films on individual substrates defining a surface having a surface area of about 1000 cm2 to about 2500 cm2.
    Type: Application
    Filed: April 22, 2010
    Publication date: October 27, 2011
    Applicant: PRIMESTAR SOLAR, INC.
    Inventors: Sean Timothy Halloran, Robert Dwayne Gossman, Russell Weldon Black
  • Patent number: 5463355
    Abstract: A vector modulator that sums outputs of a plurality of quadrature-phase-shift-key (QPSK) modulator elements, each controlled by two digital input signals and a single local oscillator. The local oscillator provides a periodic sinusoidal output signal, and the modulator elements process the periodic sinusoidal output signal and the digital input signals. The state of the respective digital input signals determines which of four phase states are present at the output of the QPSK modulator. A plurality of summing devices are coupled to outputs of the modulator elements, and one summing device provides an analog constellation output signal of the vector modulator. A plurality of attenuators are provided for amplitude weighting output signals from the plurality of modulator elements.
    Type: Grant
    Filed: July 15, 1994
    Date of Patent: October 31, 1995
    Assignee: Loral Aerospace Corp.
    Inventor: Timothy Halloran