Patents by Inventor Timothy J. Davies
Timothy J. Davies has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12369961Abstract: A cryosurgery system, comprising two or more cryoprobes is provided. Each cryoprobe includes a probe shaft having a distal section insertable in a patient and a proximal coupler. A connector interface with connection ports permits connections to a corresponding cryoprobe. Each connection port can have an isolating sleeve between the proximal coupler and the connection port when the proximal coupler of the respective cryoprobe is inserted in the connection port. The isolating sleeve can include an electrically insulating material so as to electrically isolate each cryoprobe connected to its corresponding connection port from other cryoprobes connected to their corresponding connection ports. An electrical measurement system can be connected to each connection port to detect electrical signals associated with the probe shaft. A control system can detect, based on the electrical signals detected by the electrical measurement system whether the probe shaft is electrically connected to the electrical heater.Type: GrantFiled: October 17, 2018Date of Patent: July 29, 2025Assignee: Boston Scientific Scimed, Inc.Inventors: Jason W. Sprain, Timothy J. Davis
-
Patent number: 12042205Abstract: A magnetic resonance imaging (MRI) guided surgical system is provided that includes one or more surgical tools having components configured to develop reactive effects when exposed to MR signals generated by the MRI system. The system includes a control system that can determine whether the MR system is generating MR signals, and if the control system determines that the MR system is generating MR signals, mitigates the reactive effects of MR signals on components of the surgical tools. The system can include a cryoablation system with a cryoprobe having a probe shaft being made of a metallic material. If the control system determines that the MR system is generating MR signals, the control system can electrically disconnect the cryoprobe and/or ignore electrical signals generated by the electric heater in response to exposure to MR signals, and/or initiate a cooling operation of the probe shaft, whereby the cooling operation.Type: GrantFiled: August 5, 2022Date of Patent: July 23, 2024Assignee: Biocompatibles UK LimitedInventors: Daniel T. Kollmann, Timothy J. Davis, Satish Ramadhyani, Luan T. Chan
-
Publication number: 20220369931Abstract: A magnetic resonance imaging (MRI) guided surgical system is provided that includes one or more surgical tools having components configured to develop reactive effects when exposed to MR signals generated by the MRI system. The system includes a control system that can determine whether the MR system is generating MR signals, and if the control system determines that the MR system is generating MR signals, mitigates the reactive effects of MR signals on components of the surgical tools. The system can include a cryoablation system with a cryoprobe having a probe shaft being made of a metallic material. If the control system determines that the MR system is generating MR signals, the control system can electrically disconnect the cryoprobe and/or ignore electrical signals generated by the electric heater in response to exposure to MR signals, and/or initiate a cooling operation of the probe shaft, whereby the cooling operation.Type: ApplicationFiled: August 5, 2022Publication date: November 24, 2022Inventors: Daniel T. Kollmann, Timothy J, Davis, Satish Ramadhyani, Luan T. Chan
-
Patent number: 11446074Abstract: A magnetic resonance imaging (MRI) guided surgical system is provided that includes one or more surgical tools having components configured to develop reactive effects when exposed to MR signals generated by the MRI system. The system includes a control system that can determine whether the MR system is generating MR signals, and if the control system determines that the MR system is generating MR signals, mitigates the reactive effects of MR signals on components of the surgical tools. The system can include a cryoablation system with a cryoprobe having a probe shaft being made of a metallic material. If the control system determines that the MR system is generating MR signals, the control system can electrically disconnect the cryoprobe and/or ignore electrical signals generated by the electric heater in response to exposure to MR signals, and/or initiate a cooling operation of the probe shaft, whereby the cooling operation.Type: GrantFiled: November 13, 2018Date of Patent: September 20, 2022Assignee: BIOCOMPATIBLES UK LIMITEDInventors: Daniel T. Kollmann, Timothy J. Davis, Satish Ramadhyani, Luan T. Chan
-
Publication number: 20210369319Abstract: A cryosurgery system, comprising two or more cryoprobes is provided. Each cryoprobe includes a probe shaft having a distal section insertable in a patient and a proximal coupler. A connector interface with connection ports permits connections to a corresponding cryoprobe. Each connection port can have an isolating sleeve between the proximal coupler and the connection port when the proximal coupler of the respective cryoprobe is inserted in the connection port. The isolating sleeve can include an electrically insulating material so as to electrically isolate each cryoprobe connected to its corresponding connection port from other cryoprobes connected to their corresponding connection ports. An electrical measurement system can be connected to each connection port to detect electrical signals associated with the probe shaft. A control system can detect, based on the electrical signals detected by the electrical measurement system whether the probe shaft is electrically connected to the electrical heater.Type: ApplicationFiled: October 17, 2018Publication date: December 2, 2021Inventors: Jason W. Sprain, Timothy J. Davis
-
Patent number: 10463851Abstract: An implantable stimulation system comprises a stimulator for generating electrical stimulation and a conductive stimulation lead having a proximal end electrically coupled to the stimulator, wherein at least a first component of the impedance looking into the stimulator is substantially matched to the impedance of the stimulation lead. At least one distal stimulation electrode is positioned proximate the distal end of the stimulation lead.Type: GrantFiled: May 8, 2017Date of Patent: November 5, 2019Assignee: MEDTRONIC, INC.Inventors: Piotr Przybyszewski, Carl D. Wahlstrand, Timothy J. Davis, Gregory A. Hrdlicka, James M. Olsen
-
Patent number: 10425814Abstract: An iris biometric recognition module includes technology for capturing images of an iris of an eye of a person, whether the person is moving or stationary. The iris biometric recognition technology can perform an iris matching procedure for, e.g., authentication or identity purposes, by comparing a digital iris image to a reference iris image and, if the digital and reference iris images match, authenticating a person as authorized to access a first device and transmitting a wireless communication from the first device to a second device.Type: GrantFiled: September 24, 2015Date of Patent: September 24, 2019Assignee: Princeton Identity, Inc.Inventors: Steven N. Perna, Mark A. Clifton, Jongjin Kim, Bobby S. Varma, Stephen J. Piro, Barry E. Mapen, Kevin P. Richards, David Alan Ackerman, Ann-Marie Lanzillotto, David J. Wade, Timothy J. Davis, Michael P. Fleisch, Jitendra J. Bhangley, Glen J. Van Sant
-
Publication number: 20190142492Abstract: A magnetic resonance imaging (MRI) guided surgical system is provided that includes one or more surgical tools having components configured to develop reactive effects when exposed to MR signals generated by the MRI system. The system includes a control system that can determine whether the MR system is generating MR signals, and if the control system determines that the MR system is generating MR signals, mitigates the reactive effects of MR signals on components of the surgical tools. The system can include a cryoablation system with a cryoprobe having a probe shaft being made of a metallic material. If the control system determines that the MR system is generating MR signals, the control system can electrically disconnect the cryoprobe and/or ignore electrical signals generated by the electric heater in response to exposure to MR signals, and/or initiate a cooling operation of the probe shaft, whereby the cooling operation.Type: ApplicationFiled: November 13, 2018Publication date: May 16, 2019Inventors: Daniel T. Kollmann, Timothy J. Davis, Satish Ramadhyani, Luan T. Chan
-
Publication number: 20180349589Abstract: An iris biometric recognition module includes technology for capturing images of an iris of an eye of a person, whether the person is moving or stationary. The iris biometric recognition technology can perform an iris matching procedure for, e.g., authentication or identity purposes, by comparing a digital iris image to a reference iris image and, if the digital and reference iris images match, transition an object from a locked to an unlocked state to allow access to the object.Type: ApplicationFiled: August 2, 2018Publication date: December 6, 2018Applicant: Princeton Identity, Inc.Inventors: Steven N. Perna, Mark A. Clifton, Jongjin Kim, Bobby S. Varma, Stephen J. Piro, Barry E. Mapen, Kevin P. Richards, David Alan Ackerman, Ann-Marie Lanzillotto, David J. Wade, Timothy J. Davis, Michael P. Fleisch, Jitendra J. Bhangley, Glen J. Van Sant, John Timothy Green
-
Publication number: 20180337919Abstract: An iris biometric recognition module includes technology for capturing images of an iris of an eye of a person, whether the person is moving or stationary. The iris biometric recognition technology can perform an iris matching procedure for, e.g., authentication or identity purposes, by comparing a digital iris image to a reference iris image and, if at least a portion of the digital and reference iris images match, authenticating a person as authorized to conduct a financial transaction.Type: ApplicationFiled: July 27, 2018Publication date: November 22, 2018Applicant: Princeton Identity, Inc.Inventors: Steven N. Perna, Mark A. Clifton, Jongjin Kim, Bobby S. Varma, Stephen J. Piro, Barry E. Mapen, Kevin P. Richards, David Alan Ackerman, Ann-Marie Lanzillotto, David J. Wade, Timothy J. Davis, Michael P. Fleisch, Jitendra J. Bhangley, Glen J. Van Sant, John Timothy Green
-
Publication number: 20180322343Abstract: An iris biometric recognition module includes technology for capturing images of an iris of an eye of a person, whether the person is moving or stationary. The iris biometric recognition technology can perform an iris matching procedure for, e.g., identity purposes by querying a database for data related to an identified person, comparing the data with a plurality of content, and, in response to a determination that the data matches at least one piece of the plurality of content, display the plurality of content specific to the person on a display device.Type: ApplicationFiled: July 16, 2018Publication date: November 8, 2018Applicant: Princeton Identity, Inc.Inventors: Steven N. Perna, Mark A. Clifton, Jongjin Kim, Bobby S. Varma, Stephen J. Piro, Barry E. Mapen, Kevin P. Richards, David Alan Ackerman, Ann-Marie Lanzillotto, David J. Wade, Timothy J. Davis, Michael P. Fleisch, Jitendra J. Bhangley, Glen J. Van Sant, John Timothy Green
-
Patent number: 10042994Abstract: An iris biometric recognition module includes technology for capturing images of an iris of an eye of a person, whether the person is moving or stationary. The iris biometric recognition technology can perform an iris matching procedure for, e.g., authentication or identity purposes, by comparing a digital iris image to a reference iris image and, if the digital and reference iris images match, transition an object from a locked to an unlocked state to allow access to the object.Type: GrantFiled: September 24, 2015Date of Patent: August 7, 2018Assignee: Princeton Identity, Inc.Inventors: Steven N. Perna, Mark A. Clifton, Jongjin Kim, Bobby S. Varma, Stephen J. Piro, Barry E. Mapen, Kevin P. Richards, David Alan Ackerman, Ann-Marie Lanzillotto, David J. Wade, Timothy J. Davis, Michael P. Fleisch, Jitendra J. Bhangley, Glen J. Van Sant, John Timothy Green
-
Patent number: 10038691Abstract: An iris biometric recognition module includes technology for capturing images of an iris of an eye of a person, whether the person is moving or stationary. The iris biometric recognition technology can perform an iris matching procedure for, e.g., authentication or identity purposes, by comparing a digital iris image to a reference iris image and, if at least a portion of the digital and reference iris images match, authenticating a person as authorized to conduct a financial transaction.Type: GrantFiled: September 24, 2015Date of Patent: July 31, 2018Assignee: Princeton Identity, Inc.Inventors: Steven N. Perna, Mark A. Clifton, Jongjin Kim, Bobby S. Varma, Stephen J. Piro, Barry E. Mapen, Kevin P. Richards, David Alan Ackerman, Ann-Marie Lanzillotto, David J. Wade, Timothy J. Davis, Michael P. Fleisch, Jitendra J. Bhangley, Glen J. Van Sant, John Timothy Green
-
Patent number: 10025982Abstract: An iris biometric recognition module includes technology for capturing images of an iris of an eye of a person, whether the person is moving or stationary. The iris biometric recognition technology can perform an iris matching procedure for, e.g., identity purposes by querying a database for data related to an identified person, comparing the data with a plurality of content, and, in response to a determination that the data matches at least one piece of the plurality of content, display the plurality of content specific to the person on a display device.Type: GrantFiled: September 24, 2015Date of Patent: July 17, 2018Assignee: Princeton Identity, Inc.Inventors: Steven N. Perna, Mark A. Clifton, Jongjin Kim, Bobby S. Varma, Stephen J. Piro, Barry E. Mapen, Kevin P. Richards, David Alan Ackerman, Ann-Marie Lanzillotto, David J. Wade, Timothy J. Davis, Michael P. Fleisch, Jitendra J. Bhangley, Glen J. Van Sant, John Timothy Green
-
Patent number: 9836648Abstract: An iris biometric recognition module includes technology for capturing images of an iris of an eye of a person, whether the person is moving or stationary, and whether the person is located near the iris image capture device or at a distance from the iris image capture device. The iris biometric recognition technology can perform an iris matching procedure for, e.g., authentication or identity verification purposes. The iris biometric recognition module can be incorporated into, for example, a door lock assembly and other access controlled devices, mechanisms, and systems.Type: GrantFiled: October 8, 2014Date of Patent: December 5, 2017Assignee: Princeton Identity, Inc.Inventors: Steven N. Perna, John M. Margicin, Mark A. Clifton, Jongjin Kim, Bobby S. Varma, Stephen J. Piro, Barry E. Mapen, Kevin P. Richards, David Alan Ackerman, Ann-Marie Lanzillotto, David J. Wade, Timothy J. Davis, Michael P. Fleisch, Jitendra J. Bhangley, Glen J. Van Sant, James R. Bergen, John Timothy Green
-
Patent number: 9836647Abstract: An iris biometric recognition module includes technology for capturing images of an iris of an eye of a person, whether the person is moving or stationary, and whether the person is located near the iris image capture device or at a distance from the iris image capture device. The iris biometric recognition technology can perform an iris matching procedure for, e.g., authentication or identity verification purposes. The iris biometric recognition module can be incorporated into, for example, a door lock assembly and other access controlled devices, mechanisms, and systems.Type: GrantFiled: October 8, 2014Date of Patent: December 5, 2017Assignee: Princeton Identity, Inc.Inventors: Steven N. Perna, John M. Margicin, Mark A. Clifton, Jongjin Kim, Bobby S. Varma, Stephen J. Piro, Barry E. Mapen, Kevin P. Richards, David Alan Ackerman, Ann-Marie Lanzillotto, David J. Wade, Timothy J. Davis, Michael P. Fleisch, Jitendra J. Bhangley, Glen J. Van Sant, James R. Bergen
-
Publication number: 20170251366Abstract: An iris biometric recognition module includes technology for capturing images of an iris of an eye of a person, whether the person is moving or stationary. The iris biometric recognition technology can perform an iris matching procedure for, e.g., authentication or identity purposes, by comparing a digital iris image to a reference iris image and, if the digital and reference iris images match, authenticating a person as authorized to access a first device and transmitting a wireless communication from the first device to a second device.Type: ApplicationFiled: September 24, 2015Publication date: August 31, 2017Applicant: Princeton Identity, Inc.Inventors: Steven N. Perna, Mark A. Clifton, Jongjin Kim, Bobby S. Varma, Stephen J. Piro, Barry E. Mapen, Kevin P. Richards, David Alan Ackerman, Ann-Marie Lanzilloto, David J. Wade, Timothy J. Davis, Michael P. Fleisch, Jitendra J. Bhangley, Glen J. Van Sant
-
Publication number: 20170239460Abstract: An implantable stimulation system comprises a stimulator for generating electrical stimulation and a conductive stimulation lead having a proximal end electrically coupled to the stimulator, wherein at least a first component of the impedance looking into the stimulator is substantially matched to the impedance of the stimulation lead. At least one distal stimulation electrode is positioned proximate the distal end of the stimulation lead.Type: ApplicationFiled: May 8, 2017Publication date: August 24, 2017Inventors: Piotr Przybyszewski, Carl D. Wahlstrand, Timothy J. Davis, Gregory A. Hrdlicka, James M. Olsen
-
Patent number: 9693716Abstract: A medical device including an optical sensor is configured to measure an optical signal by integrating a current induced on a light detector of the optical sensor to obtain a voltage signal. The voltage signal is compared to a threshold. Responsive to the voltage signal reaching the threshold, an optical sensor control parameter is adjusted. The optical sensor is operated to produce the voltage signal using the adjusted control parameter.Type: GrantFiled: March 9, 2011Date of Patent: July 4, 2017Assignee: Medtronic, Inc.Inventors: Robert Michael Ecker, Timothy J. Davis, James D. Reinke
-
Patent number: 9643009Abstract: An implantable stimulation system comprises a stimulator for generating electrical stimulation and a conductive stimulation lead having a proximal end electrically coupled to the stimulator, wherein at least a first component of the impedance looking into the stimulator is substantially matched to the impedance of the stimulation lead. At least one distal stimulation electrode is positioned proximate the distal end of the stimulation lead.Type: GrantFiled: March 1, 2016Date of Patent: May 9, 2017Assignee: MEDTRONIC, INC.Inventors: Piotr Przybyszewski, Carl D. Wahlstrand, Timothy J. Davis, Gregory A. Hrdlicka, James M. Olsen