Patents by Inventor Timothy J. Denison

Timothy J. Denison has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11957893
    Abstract: A neuromodulation therapy is delivered via at least one electrode implanted subcutaneously and superficially to a fascia layer superficial to a nerve of a patient. In one example, an implantable medical device is deployed along a superficial surface of a deep fascia tissue layer superficial to a nerve of a patient. Electrical stimulation energy is delivered to the nerve through the deep fascia tissue layer via implantable medical device electrodes.
    Type: Grant
    Filed: August 25, 2020
    Date of Patent: April 16, 2024
    Assignee: Medtronic, Inc.
    Inventors: Brad C. Tischendorf, John E. Kast, Thomas P. Miltich, Gordon O. Munns, Randy S. Roles, Craig L. Schmidt, Joseph J. Viavattine, Christian S. Nielsen, Prabhakar A. Tamirisa, Anthony M. Chasensky, Markus W. Reiterer, Chris J. Paidosh, Reginald D. Robinson, Bernard Q. Li, Erik R. Scott, Phillip C. Falkner, Xuan K. Wei, Eric H. Bonde, David A. Dinsmoor, Duane L. Bourget, Forrest C M Pape, Gabriela C. Molnar, Joel A. Anderson, Michael J. Ebert, Richard T. Stone, Shawn C. Kelley, Stephen J. Roddy, Timothy J. Denison, Todd V. Smith
  • Patent number: 11957894
    Abstract: A neuromodulation therapy is delivered via at least one electrode implanted subcutaneously and superficially to a fascia layer superficial to a nerve of a patient. In one example, an implantable medical device is deployed along a superficial surface of a deep fascia tissue layer superficial to a nerve of a patient. Electrical stimulation energy is delivered to the nerve through the deep fascia tissue layer via implantable medical device electrodes.
    Type: Grant
    Filed: August 25, 2020
    Date of Patent: April 16, 2024
    Assignee: Medtronic, Inc.
    Inventors: Anthony M. Chasensky, Bernard Q. Li, Brad C. Tischendorf, Chris J. Paidosh, Christian S. Nielsen, Craig L. Schmidt, David A. Dinsmoor, Duane L. Bourget, Eric H. Bonde, Erik R. Scott, Forrest C M Pape, Gabriela C. Molnar, Gordon O. Munns, Joel A. Anderson, John E. Kast, Joseph J. Viavattine, Markus W. Reiterer, Michael J. Ebert, Phillip C. Falkner, Prabhakar A. Tamirisa, Randy S. Roles, Reginald D. Robinson, Richard T. Stone, Shawn C. Kelley, Stephen J. Roddy, Thomas P. Miltich, Timothy J. Denison, Todd V. Smith, Xuan K. Wei
  • Publication number: 20240058600
    Abstract: Techniques are disclosed for delivering electrical stimulation therapy to a patient. In one example, a medical system delivers electrical stimulation therapy to a tissue of the patient via electrodes. The medical system determines a first change of a first sensed signal of the patient to movement by the patient and a second change of a second sensed signal of the patient to the movement by the patient. Based on the first change and the second change, the medical system selects one of the first sensed signal and the second sensed signal of the patient for controlling the electrical stimulation therapy. The medical system adjusts a level of at least one parameter of the electrical stimulation therapy based on the selected one of the first sensed signal and the second sensed signal.
    Type: Application
    Filed: October 27, 2023
    Publication date: February 22, 2024
    Inventors: Scott R. Stanslaski, Timothy R. Abraham, Thomas Adamski, Timothy J. Denison, Robert S. Raike
  • Publication number: 20240050736
    Abstract: Techniques are disclosed for delivering electrical stimulation therapy to a patient. In one example, a medical system delivers electrical stimulation therapy to a tissue of the patient via electrodes. The medical system determines a first change of a first sensed signal of the patient to movement by the patient and a second change of a second sensed signal of the patient to the movement by the patient. Based on the first change and the second change, the medical system selects one of the first sensed signal and the second sensed signal of the patient for controlling the electrical stimulation therapy. The medical system adjusts a level of at least one parameter of the electrical stimulation therapy based on the selected one of the first sensed signal and the second sensed signal.
    Type: Application
    Filed: October 27, 2023
    Publication date: February 15, 2024
    Inventors: Scott R. Stanlaski, Timothy R. Abraham, Thomas Adamski, Timothy J. Denison, Robert S. Raike
  • Patent number: 11839755
    Abstract: This disclosure relates to methods, devices, and systems for delivering and adjusting stimulation therapy. In one example, a method comprising delivering, by a stimulation electrode, electrical stimulation as a candidate therapy to a patient according to a set of candidate therapy parameters, the stimulation electrode located in proximity to the dorsal column of a patient; sensing, by a sensing electrode, an electrically evoked compound action potential (eECAP) signal in response to the delivery of the electrical stimulation; and classifying, by a processor, the sensed eECAP signal generated in response to the application of the candidate therapy relative to an eECAP baseline is disclosed.
    Type: Grant
    Filed: February 5, 2020
    Date of Patent: December 12, 2023
    Assignee: Medtronic, Inc.
    Inventors: David A. Dinsmoor, Timothy J. Denison, Xin Su
  • Publication number: 20230310841
    Abstract: Techniques are disclosed for defining a homeostatic window for controlling delivery of electrical stimulation therapy to a patient. In one example, a method includes generating and delivering electrical stimulation therapy to tissue of a patient via electrodes. Further, the method includes adjusting a level of a parameter of the electrical stimulation therapy such that a signal of the patient is not less than a lower bound and not greater than an upper bound. The lower bound is determined to be the magnitude of the signal while receiving electrical stimulation therapy sufficient to reduce one or more symptoms of a disease while the patient was receiving medication for reduction of the one or more symptoms. Further, the upper bound is determined to be the magnitude of the signal while receiving electrical stimulation therapy sufficient to reduce the one or more symptoms when the patient was not receiving the medication.
    Type: Application
    Filed: June 5, 2023
    Publication date: October 5, 2023
    Inventors: Scott R. Stanslaski, Thomas Adamski, Duane L. Bourget, Timothy J. Denison, Benjamin P. Isaacson, Eric J. Panken, Jeffrey Herron
  • Patent number: 11730949
    Abstract: A neuromodulation therapy is delivered via at least one electrode implanted subcutaneously and superficially to a fascia layer superficial to a nerve of a patient. In one example, an implantable medical device is deployed along a superficial surface of a deep fascia tissue layer superficial to a nerve of a patient. Electrical stimulation energy is delivered to the nerve through the deep fascia tissue layer via implantable medical device electrodes.
    Type: Grant
    Filed: August 25, 2020
    Date of Patent: August 22, 2023
    Assignee: Medtronic, Inc.
    Inventors: Erik R. Scott, John E. Kast, Xuan K. Wei, Todd V. Smith, Joel A. Anderson, Forrest C. M. Pape, Duane L. Bourget, Timothy J. Denison, David A. Dinsmoor, Randy S. Roles, Stephen J. Roddy
  • Patent number: 11672969
    Abstract: A medical device system for delivering a neuromodulation therapy includes a delivery tool for deploying an implantable medical device at a neuromodulation therapy site. The implantable medical device includes a housing, an electronic circuit within the housing, and an electrical lead comprising a lead body extending between a proximal end coupled to the housing and a distal end extending away from the housing and at least one electrode carried by the lead body. The delivery tool includes a first cavity for receiving the housing and a second cavity for receiving the lead. The first cavity and the second cavity are in direct communication for receiving and deploying the housing and the lead coupled to the housing concomitantly as a single unit.
    Type: Grant
    Filed: August 25, 2020
    Date of Patent: June 13, 2023
    Assignee: Medtronic, Inc.
    Inventors: Anthony M. Chasensky, Bernard Q. Li, Brad C. Tischendorf, Chris J. Paidosh, Christian S. Nielsen, Craig L. Schmidt, David A. Dinsmoor, Duane L. Bourget, Eric H. Bonde, Erik R. Scott, Forrest C M Pape, Gabriela C. Molnar, Gordon O. Munns, Joel A. Anderson, John E. Kast, Joseph J. Viavattine, Markus W. Reiterer, Michael J. Ebert, Phillip C. Falkner, Prabhakar A. Tamirisa, Randy S. Roles, Reginald D. Robinson, Richard T. Stone, Shawn C. Kelley, Stephen J. Roddy, Thomas P. Miltich, Timothy J. Denison, Todd V. Smith, Xuan K. Wei
  • Patent number: 11666750
    Abstract: Techniques are disclosed for defining a homeostatic window for controlling delivery of electrical stimulation therapy to a patient. In one example, a method includes generating and delivering electrical stimulation therapy to tissue of a patient via electrodes. Further, the method includes adjusting a level of a parameter of the electrical stimulation therapy such that a signal of the patient is not less than a lower bound and not greater than an upper bound. The lower bound is determined to be the magnitude of the signal while receiving electrical stimulation therapy sufficient to reduce one or more symptoms of a disease while the patient was receiving medication for reduction of the one or more symptoms. Further, the upper bound is determined to be the magnitude of the signal while receiving electrical stimulation therapy sufficient to reduce the one or more symptoms when the patient was not receiving the medication.
    Type: Grant
    Filed: November 30, 2020
    Date of Patent: June 6, 2023
    Assignee: Medtronic, Inc.
    Inventors: Scott R. Stanslaski, Thomas Adamski, Duane L. Bourget, Timothy J. Denison, Benjamin P. Isaacson, Eric J. Panken, Jeffrey Herron
  • Patent number: 11648398
    Abstract: In some examples, a processor of a system evaluates a therapy program based on a score determined based on a volume of tissue expected to be activated (“VTA”) by therapy delivery according to the therapy program. The score may be determined using an efficacy map comprising a plurality of voxels that are each assigned a value. In some examples, the efficacy map is selected from a plurality of stored efficacy maps based on a patient condition, one or more patient symptoms, or both the patient condition and one or more patient symptoms. In addition, in some examples, voxels of the efficacy map are assigned respective values that are associated with a clinical rating scale.
    Type: Grant
    Filed: January 28, 2020
    Date of Patent: May 16, 2023
    Assignee: Medtronic, Inc.
    Inventors: Ashutosh Chaturvedi, Siddharth Dani, Timothy J. Denison, William F. Kaemmerer, Shahram Malekkhosravi, Eric J. Panken, Brandon Zingsheim
  • Patent number: 11628302
    Abstract: A medical device may receive sensor data from sensing sources, and determine confidence levels for sensor data received from each of the plurality of sensing sources. Each of the confidence levels of the sensor data from each of the sensing sources is a measure of accuracy of the sensor data received from respective sensing sources. The medical device may also determine one or more therapy parameter values based on the determined confidence levels, and cause delivery of therapy based on the determined one or more therapy parameter values.
    Type: Grant
    Filed: September 10, 2020
    Date of Patent: April 18, 2023
    Assignee: MEDTRONIC, INC.
    Inventors: William F. Kaemmerer, Duane L. Bourget, Timothy J. Denison, Eric J. Panken, Scott R. Stanslaski
  • Patent number: 11529518
    Abstract: Various embodiments concern delivering electrical stimulation to the brain at a plurality of different levels of a stimulation parameter and sensing a bioelectrical response of the brain to delivery of the electrical stimulation for each of the plurality of different levels of the stimulation parameter. A suppression window of the stimulation parameter can be identified as having a suppression threshold as a lower boundary and an after-discharge threshold as an upper boundary based on the sensed bioelectrical responses. A therapy level of the stimulation parameter can be set for therapy delivery based on the suppression window. The therapy level of the stimulation parameter may be set closer to the suppression threshold than the after-discharge threshold within the suppression window. Data for hippocampal stimulation demonstrating a suppression window is presented.
    Type: Grant
    Filed: April 14, 2020
    Date of Patent: December 20, 2022
    Assignee: Medtronic, Inc.
    Inventors: Jonathon E. Giftakis, Paul H. Stypulkowski, Timothy J. Denison, Scott R. Stanslaski
  • Patent number: 11511115
    Abstract: Systems and method may be used for interfacing with a patient. Systems may include a plurality of electrodes in electrical communication with a processor. The processor may be configured to receive sense signals from electrodes and to determine the reliability of the received signal. A test tone signal comprising a test tone frequency may be applied, and the magnitude of the test tone frequency may be analyzed in the received signal. If it is determined that the magnitude of the test tone frequency is below a threshold, the system may take action, such as lowering the gain on an amplifier. Stimulation signals may be applied to the patient at a stimulation frequency simultaneously with one or both of receiving sense signals and providing the test tone signal.
    Type: Grant
    Filed: August 23, 2018
    Date of Patent: November 29, 2022
    Assignee: MEDTRONIC, INC.
    Inventors: Timothy J. Denison, Pedram Afshar, Scott R. Stanslaski
  • Patent number: 11484715
    Abstract: This disclosure relates to methods, devices, and systems for delivering and adjusting stimulation therapy. In one example, a method comprising delivering, by a stimulation electrode, electrical stimulation as a candidate therapy to a patient according to a set of candidate therapy parameters, the stimulation electrode located in proximity to the dorsal column of a patient; sensing, by a sensing electrode, an electrically evoked compound action potential (eECAP) signal in response to the delivery of the electrical stimulation; and classifying, by a processor, the sensed eECAP signal generated in response to the application of the candidate therapy relative to an eECAP baseline is disclosed.
    Type: Grant
    Filed: February 5, 2020
    Date of Patent: November 1, 2022
    Assignee: Medtronic, Inc.
    Inventors: David A. Dinsmoor, Timothy J. Denison, Xin Su
  • Patent number: 11426514
    Abstract: The disclosure is directed to a pressure sensor of an implantable medical device. The pressure sensor may utilize detect fluid pressure based on a changing capacitance between two capacitive elements. The pressure sensor may define at least a portion of a fluid enclosure of the IMD. In one example, the pressure sensor has a self-aligning housing shape that occludes an opening in the pump bulkhead of the IMD. An operative surface of the pressure and the portion of the fluid enclosure may be formed of a corrosion resistant and/or biocompatible material. A first capacitive element of the pressure sensor may be a metal alloy diaphragm that deflects in response to external fluid pressure. A second capacitive element of the pressure sensor may be a metal coating on a rigid insulator sealed from the fluid by the diaphragm and a housing of the sensor.
    Type: Grant
    Filed: September 9, 2019
    Date of Patent: August 30, 2022
    Assignee: Medtronic, Inc.
    Inventors: Keith A. Miesel, James M. Haase, Chris J. Paidosh, Darren A. Janzig, Timothy J. Denison
  • Patent number: 11406347
    Abstract: Acoustic signals may be used to monitor one or more symptoms of a patient disease. A patient prescription may indicate one or more acoustic sensing programs that may be used to monitor at least on characteristic of an acoustic signal indicative of a patient symptom or disease. The patient prescription may also include a patient specific threshold. When the at least one characteristic of the acoustic signal is compared to the patient specific threshold an indication or warning signal may be generated. The warning signal may indicate a change in patient disease state.
    Type: Grant
    Filed: October 22, 2015
    Date of Patent: August 9, 2022
    Assignee: Medtronic, Inc.
    Inventors: Xin Su, Timothy J. Denison, Brett Knappe
  • Publication number: 20220176128
    Abstract: This disclosure relates to methods, devices, and systems for delivering and adjusting stimulation therapy. In one example, a method comprising delivering, by a stimulation electrode, electrical stimulation as a candidate therapy to a patient according to a set of candidate therapy parameters, the stimulation electrode located in proximity to the dorsal column of a patient; sensing, by a sensing electrode, an electrically evoked compound action potential (eECAP) signal in response to the delivery of the electrical stimulation; and classifying, by a processor, the sensed eECAP signal generated in response to the application of the candidate therapy relative to an eECAP baseline is disclosed.
    Type: Application
    Filed: December 16, 2021
    Publication date: June 9, 2022
    Inventors: David A. Dinsmoor, Timothy J. Denison, Xin Su
  • Publication number: 20210361213
    Abstract: Devices and methods provide for the sensing of physiological signals during stimulation therapy by preventing stimulation waveform artifacts from being passed through to the amplification of the sensed physiological signal. Thus, the amplifiers are not adversely affected by the stimulation waveform and can provide for successful sensing of physiological signals between stimulation waveform pulses. A blanking switch may be used to blank the stimulation waveform artifacts where the blanking switch is operated in a manner synchronized with the stimulation waveform so that conduction in the sensing path is blocked during the stimulation pulse as well as during other troublesome artifacts such as a peak of a recharge pulse. A limiter may be used to limit the amplitude of the sensed signal, and hence the stimulation artifacts, that are passed to the amplifier without any synchronization of the limiter to the stimulation waveform.
    Type: Application
    Filed: August 4, 2021
    Publication date: November 25, 2021
    Inventors: Scott R. Stanslaski, Peng Cong, Wesley A. Santa, Timothy J. Denison
  • Publication number: 20210322770
    Abstract: In some examples of selecting a target therapy delivery site for treating a patient condition, a relatively high frequency electrical stimulation signal is delivered to at least two areas within a first region (e.g., an anterior nucleus of the thalamus) of a brain of a patient, and changes in brain activity (e.g., as indicated by bioelectrical brain signals) within a second region (e.g., a hippocampus) of the brain of the patient in response to the delivered stimulation are determined. The target therapy delivery site, an electrode combination, or both, may be selected based on the changes in brain activity.
    Type: Application
    Filed: June 30, 2021
    Publication date: October 21, 2021
    Inventors: Jonathon E. Giftakis, Timothy J. Denison, Paul H. Stypulkowski, Scott R. Stanslaski, Robert S. Raike, Mae Eng, David E. Linde, Thomas Adamski
  • Publication number: 20210267465
    Abstract: A system for detecting strokes includes a sensor device configured to obtain physiological data from a patient, for example brain activity data. A computing device communicatively coupled to the sensor device is configured to receive the physiological data and compare it with reference data. The reference data can be patient data from an opposite brain hemisphere to the hemisphere being interrogated or the reference data can be non-patient data from stroke and normal patient populations. Based on comparison of the physiological data and the reference data, the system indicates whether the patient has suffered a stroke.
    Type: Application
    Filed: May 17, 2021
    Publication date: September 2, 2021
    Inventors: John Wainwright, Heather D. Orser, Eric J. Panken, Timothy J. Denison