Patents by Inventor Timothy J. Denison

Timothy J. Denison has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160158553
    Abstract: A patient controls the delivery of therapy through volitional inputs that are detected by a biosignal within the brain. The volitional patient input may be directed towards performing a specific physical or mental activity, such as moving a muscle or performing a mathematical calculation. In one embodiment, a biosignal detection module monitors an electroencephalogram (EEG) signal from within the brain of the patient and determines whether the EEG signal includes the biosignal. In one embodiment, the biosignal detection module analyzes one or more frequency components of the EEG signal. In this manner, the patient may adjust therapy delivery by providing a volitional input that is detected by brain signals, wherein the volitional input may not require the interaction with another device, thereby eliminating the need for an external programmer to adjust therapy delivery. Example therapies include electrical stimulation, drug delivery, and delivery of sensory cues.
    Type: Application
    Filed: February 1, 2016
    Publication date: June 9, 2016
    Inventors: Eric J. Panken, Timothy J. Denison, Gregory F. Molnar
  • Patent number: 9333350
    Abstract: A therapy system for managing a psychiatric disorder of the patient may be controlled based on a patient mood state. Therapy may be delivered to a patient according to a therapy program, and a physiological parameter of the patient may be monitored during or after therapy delivery. The patient mood state may be determined based on the monitored physiological parameter, and the therapy delivery may be controlled based on the determined mood state. In some embodiments, the therapy delivery is stopped prior to determining the patient mood state and the therapy delivery is restarted upon detecting a negative mood state. In other embodiments, therapy delivery is delivered until a positive mood state is detected, at which point the therapy delivery may be stopped.
    Type: Grant
    Filed: April 17, 2009
    Date of Patent: May 10, 2016
    Assignee: Medtronic, Inc.
    Inventors: Mark T. Rise, Jonathon E. Giftakis, Paul H. Stypulkowski, Timothy J. Denison, Nathan A. Torgerson
  • Patent number: 9327070
    Abstract: This disclosure describes techniques implemented by a medical device, such as an implantable medical device (IMD). The IMD may be configured to detect a posture state of a patient, and deliver posture-responsive therapy. In particular, the IMD not only detects the posture state of a patient, but also detects timing associated with the detected posture state, such as the time of day, the day of the week, or a specific time of day associated with a specific day. In this way, the posture-responsive therapy delivered by the IMD may be dependent not only on the posture state of the patient, but also on the timing associated with the posture state. The same posture state, therefore, may result in different types of therapy to the patient if the same posture occurs at different times of the day.
    Type: Grant
    Filed: April 30, 2009
    Date of Patent: May 3, 2016
    Assignee: Medtronic, Inc.
    Inventors: Dennis M. Skelton, Jon P. Davis, Timothy J. Denison
  • Patent number: 9327117
    Abstract: This disclosure provides techniques for bladder sensing. In accordance with the techniques described in this disclosure, a device may measure the impedance of a bladder, determine the posture of a patient, and determine a status of the bladder based on the impedance and posture.
    Type: Grant
    Filed: April 20, 2010
    Date of Patent: May 3, 2016
    Assignee: Medtronic, Inc.
    Inventors: Timothy J. Denison, Keith A. Miesel
  • Publication number: 20160113618
    Abstract: Acoustic signals may be used to monitor one or more symptoms of a patient disease. A patient prescription may indicate one or more acoustic sensing programs that may be used to monitor at least on characteristic of an acoustic signal indicative of a patient symptom or disease. The patient prescription may also include a patient specific threshold. When the at least one characteristic of the acoustic signal is compared to the patient specific threshold an indication or warning signal may be generated. The warning signal may indicate a change in patient disease state.
    Type: Application
    Filed: October 22, 2015
    Publication date: April 28, 2016
    Inventors: Xin Su, Timothy J. Denison, Brett Knappe
  • Publication number: 20160067495
    Abstract: In some examples, a processor of a system evaluates a therapy program based on a score determined based on a volume of tissue expected to be activated (“VTA”) by therapy delivery according to the therapy program. The score may be determined using an efficacy map comprising a plurality of voxels that are each assigned a value. In some examples, the efficacy map is selected from a plurality of stored efficacy maps based on a patient condition, one or more patient symptoms, or both the patient condition and one or more patient symptoms. In addition, in some examples, voxels of the efficacy map are assigned respective values that are associated with a clinical rating scale.
    Type: Application
    Filed: September 9, 2014
    Publication date: March 10, 2016
    Inventors: Ashutosh Chaturvedi, Siddharth Dani, Timothy J. Denison, William F. Kaemmerer, Shahram Malekkhosravi, Eric J. Panken, Brandon Zingsheim
  • Patent number: 9248288
    Abstract: A patient controls the delivery of therapy through volitional inputs that are detected by a biosignal within the brain. The volitional patient input may be directed towards performing a specific physical or mental activity, such as moving a muscle or performing a mathematical calculation. In one embodiment, a biosignal detection module monitors an electroencephalogram (EEG) signal from within the brain of the patient and determines whether the EEG signal includes the biosignal. In one embodiment, the biosignal detection module analyzes one or more frequency components of the EEG signal. In this manner, the patient may adjust therapy delivery by providing a volitional input that is detected by brain signals, wherein the volitional input may not require the interaction with another device, thereby eliminating the need for an external programmer to adjust therapy delivery. Example therapies include electrical stimulation, drug delivery, and delivery of sensory cues.
    Type: Grant
    Filed: January 14, 2013
    Date of Patent: February 2, 2016
    Assignee: Medtronic, Inc.
    Inventors: Eric J. Panken, Timothy J. Denison, Gregory F. Molnar
  • Publication number: 20150375006
    Abstract: A method for delivering optical stimulation comprises transfecting a target tissue with a light-sensitive channel protein sensitive to light in a wavelength range, delivering light in the wavelength range to the target tissue via an optical stimulation device, substantially simultaneously with delivering light to the target tissue, sensing bioelectric signals, determining a patient therapeutic state based on the bioelectric signals, and adjusting the delivery of the light to the target tissue based on the sensed patient therapeutic state.
    Type: Application
    Filed: June 5, 2015
    Publication date: December 31, 2015
    Inventors: Timothy J. Denison, Kunal Paralikar, Gordon Orvis Munns, Wesley A. Santa, Peng Cong, Christian S. Nielsen, John D. Norton, John G. Keimel
  • Patent number: 9197173
    Abstract: This disclosure describes a chopper stabilized instrumentation amplifier. The amplifier is configured to achieve stable measurements at low frequency with very low power consumption. The instrumentation amplifier uses a differential architecture and a mixer amplifier to substantially eliminate noise and offset from an output signal produced by the amplifier. Dynamic limitations, i.e., glitching, that result from chopper stabilization at low power are substantially eliminated through a combination of chopping at low impedance nodes within the mixer amplifier and feedback. The signal path of the amplifier operates as a continuous time system, providing minimal aliasing of noise or external signals entering the signal pathway at the chop frequency or its harmonics. The amplifier can be used in a low power system, such as an implantable medical device, to provide a stable, low-noise output signal.
    Type: Grant
    Filed: October 14, 2009
    Date of Patent: November 24, 2015
    Assignee: Medtronic, Inc.
    Inventors: Timothy J. Denison, Wesley A. Santa
  • Patent number: 9149635
    Abstract: This disclosure describes techniques for generating stimulation current pulses that have differing pulse shapes in a medical device. A circuit architecture is described that is configured to charge a capacitor to an initial amount of charge, modulate the amount of charge stored in the capacitor based on a control signal, and generate a stimulation current pulse that has an amplitude based on the amount charge stored in the capacitor. The circuit architecture may be configured to generate complex pulse shapes, such as, e.g., steps, ramps, bursts, and combinations thereof.
    Type: Grant
    Filed: April 27, 2012
    Date of Patent: October 6, 2015
    Assignee: Medtronic, Inc.
    Inventors: Timothy J. Denison, Robert W. Hocken, Jr., Gabriela C. Molnar, Wesley A. Santa, Jalpa S. Shah, Larry E. Tyler
  • Publication number: 20150265207
    Abstract: Therapy delivery to a patient may be controlled based on a determined sleep stage of the patient. In examples, the sleep stage may be determined based on a frequency characteristic of a biosignal indicative of brain activity of the patient. A frequency characteristic may include, for example, a power level within one or more frequency bands of the biosignal, a ratio of the power level in two or more frequency bands, or a pattern in the power level of one or more frequency bands over time. A therapy program may be selected or modified based on the sleep stage determination. Therapy may be delivered during the sleep stage according to the selected or modified therapy program. In some examples, therapy delivery may be controlled after making separate determinations of a sleep stage based on the biosignal and another physiological parameter, and confirming that the sleep stage determinations are consistent.
    Type: Application
    Filed: June 8, 2015
    Publication date: September 24, 2015
    Inventors: Jianping Wu, Gregory F. Molnar, Gabriela C. Molnar, Timothy J. Denison
  • Publication number: 20150223710
    Abstract: Devices and methods provide for the sensing of physiological signals during stimulation therapy by preventing stimulation waveform artifacts from being passed through to the amplification of the sensed physiological signal. Thus, the sensing amplifier is not adversely affected by the stimulation waveform and can provide for successful sensing of physiological signals. A common mode voltage is applied to the stimulation electrodes while sensing during a recharge period where the common mode voltage approximates the stimulation pulse being received at the sensing electrodes. This common mode voltage is determined based on measuring a common mode signal for at least one of the inputs of the amplifier or by deriving the proper common mode from monitoring the output signal of the amplifier to observe the elimination of artifacts during stimulation. Blanking switches may be used to blank the sensing of the peak of the recharge period should that peak be relatively large.
    Type: Application
    Filed: February 7, 2014
    Publication date: August 13, 2015
    Applicant: Medtronic, Inc.
    Inventors: Peng Cong, Timothy J. Denison, Forrest C.M. Pape, Wesley A. Santa, Jalpa S. Shah, Scott R. Stanslaski
  • Publication number: 20150202447
    Abstract: The disclosure describes a method and system or controlling symptoms of patients suffering from Parkinson's Disease. In some examples, one or more biomarkers indicative of a patient's present symptoms are determined. The biomarkers may be used to control therapy delivered to the patient in a closed-loop manner. In addition, biomarkers may be used as an indication of therapy effectiveness.
    Type: Application
    Filed: January 16, 2015
    Publication date: July 23, 2015
    Inventors: Pedram Afshar, Timothy J. Denison, David E. Linde, Scott R. Stanslaski
  • Patent number: 9072870
    Abstract: Therapy delivery to a patient may be controlled based on a determined sleep stage of the patient. In examples, the sleep stage may be determined based on a frequency characteristic of a biosignal indicative of brain activity of the patient. A frequency characteristic may include, for example, a power level within one or more frequency bands of the biosignal, a ratio of the power level in two or more frequency bands, or a pattern in the power level of one or more frequency bands over time. A therapy program may be selected or modified based on the sleep stage determination. Therapy may be delivered during the sleep stage according to the selected or modified therapy program. In some examples, therapy delivery may be controlled after making separate determinations of a sleep stage based on the biosignal and another physiological parameter, and confirming that the sleep stage determinations are consistent.
    Type: Grant
    Filed: September 25, 2008
    Date of Patent: July 7, 2015
    Assignee: Medtronic, Inc.
    Inventors: Jianping Wu, Gregory F. Molnar, Gabriela C. Miyazawa, Timothy J. Denison
  • Patent number: 9046483
    Abstract: The invention relates to a method for characterizing a target polynucleic acid by providing a surface containing a channel of a dimension sufficient to allow sequential monomer-by-monomer passage of a single-stranded polynucleic acid, but not of a double-stranded polynucleic acid; providing a source of hybridized target polynucleic acid at the surface; inducing passage of the target polynucleic acid through the channel, whereby the target polynucleic acid undergoes base pair separation (melts) prior to its passage; and making one or more measurements over time as the target polynucleic acid moves relative to the channel yielding data suitable to determine a monomer-dependent characteristic of the target polynucleic acid.
    Type: Grant
    Filed: August 8, 2013
    Date of Patent: June 2, 2015
    Assignee: President and Fellows of Harvard College
    Inventors: Timothy J. Denison, Alexis Sauer-Budge, Jene A. Golovchenko, Amit Meller, Eric Brandin, Daniel Branton
  • Patent number: 9042990
    Abstract: Bioelectrical signals may be sensed within a brain of a patient with a plurality of sense electrode combinations. A stimulation electrode combination for delivering stimulation to the patient to manage a patient condition may be selected based on the frequency band characteristics of the sensed signals. In some examples, a stimulation electrode combination associated with the sense electrode combination that sensed a bioelectrical brain signal having a relatively highest relative beta band power level may be selected to deliver stimulation therapy to the patient. Other frequency bands characteristics may also be used to select the stimulation electrode combination.
    Type: Grant
    Filed: January 22, 2014
    Date of Patent: May 26, 2015
    Assignee: Medtronic, Inc.
    Inventors: David L. Carlson, Randy M. Jensen, Timothy J. Denison, Jianping Wu, Gabriela C. Molnar, Scott R. Stanslaski, William J. Marks, Jr.
  • Patent number: 9042989
    Abstract: Bioelectrical signals may be sensed within a brain of a patient with a plurality of sense electrode combinations. A stimulation electrode combination for delivering stimulation to the patient to manage a patient condition may be selected based on the frequency band characteristics of the sensed signals. In some examples, a stimulation electrode combination associated with the sense electrode combination that sensed a bioelectrical brain signal having a relatively highest relative beta band power level may be selected to deliver stimulation therapy to the patient. Other frequency bands characteristics may also be used to select the stimulation electrode combination.
    Type: Grant
    Filed: January 22, 2014
    Date of Patent: May 26, 2015
    Assignee: Medtronic, Inc.
    Inventors: David L. Carlson, Randy M. Jensen, Timothy J. Denison, Jianping Wu, Gabriela C. Molnar, Scott R. Stanslaski, William J. Marks, Jr.
  • Patent number: 9026223
    Abstract: Posture-responsive therapy is delivered by the medical system based on posture state input from only one of multiple posture sensors at any given time. An example implantable medical system includes a first posture sensor and a second sensor. A processor controls therapy delivery to the patient based on at least one of a patient posture state or a patient activity level determined based on input from only one of the first or second posture sensors. In some examples, one of multiple posture sensors of an implantable posture-responsive medical system is used to automatically reorient another posture sensor (of the system), which has become disoriented. The disoriented posture sensor may be automatically reoriented for one or more posture states at a time.
    Type: Grant
    Filed: April 30, 2009
    Date of Patent: May 5, 2015
    Assignee: Medtronic, Inc.
    Inventors: Dennis M. Skelton, Jon P. Davis, Keith A. Miesel, Timothy J. Denison
  • Publication number: 20150119751
    Abstract: Devices and methods provide for the sensing of physiological signals during stimulation therapy by preventing stimulation waveform artifacts from being passed through to the amplification of the sensed physiological signal. Thus, the amplifiers are not adversely affected by the stimulation waveform and can provide for successful sensing of physiological signals between stimulation waveform pulses. A blanking switch may be used to blank the stimulation waveform artifacts where the blanking switch is operated in a manner synchronized with the stimulation waveform so that conduction in the sensing path is blocked during the stimulation pulse as well as during other troublesome artifacts such as a peak of a recharge pulse. A limiter may be used to limit the amplitude of the sensed signal, and hence the stimulation artifacts, that are passed to the amplifier without any synchronization of the limiter to the stimulation waveform.
    Type: Application
    Filed: October 28, 2013
    Publication date: April 30, 2015
    Applicant: Medtronic, Inc.
    Inventors: Scott R. Stanslaski, Peng Cong, Wesley A. Santa, Timothy J. Denison
  • Patent number: 8986528
    Abstract: The invention relates to a method for characterizing a target polynucleic acid by providing a surface containing a channel of a dimension sufficient to allow sequential monomer-by-monomer passage of a single-stranded polynucleic acid, but not of a double-stranded polynucleic acid; providing a source of hybridized target polynucleic acid at the surface; inducing passage of the target polynucleic acid through the channel, whereby the target polynucleic acid undergoes base pair separation (melts) prior to its passage; and making one or more measurements over time as the target polynucleic acid moves relative to the channel yielding data suitable to determine a monomer-dependent characteristic of the target polynucleic acid.
    Type: Grant
    Filed: March 28, 2013
    Date of Patent: March 24, 2015
    Assignee: President and Fellows of Harvard College
    Inventors: Timothy J. Denison, Alexis Sauer-Budge, Jene A. Golovchenko, Amit Meller, Eric Brandin, Daniel Branton