Patents by Inventor Timothy J. Klemmer

Timothy J. Klemmer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150154995
    Abstract: Provided herein is an apparatus comprising a substrate; a continuous layer over the substrate comprising a first heat sink layer; and a plurality of features over the continuous layer comprising a second heat sink layer, a first magnetic layer over the second heat sink layer, and a second magnetic layer, wherein the first and second magnetic layers are configured to provide a temperature-dependent, exchange spring mechanism.
    Type: Application
    Filed: February 10, 2015
    Publication date: June 4, 2015
    Inventors: Xi Chen, Ganping Ju, Yingguo Peng, Timothy J. Klemmer, Yukiko Kubota, Jan-Ulrich Thiele, David S. Kuo, Kai-Chieh Chang, Kangkang Wang, Li Gao, Yinfeng Ding
  • Publication number: 20150093598
    Abstract: A stack includes a substrate and a magnetic recording layer. Disposed between the substrate and magnetic recording layer is an MgO—Ti(ON) layer.
    Type: Application
    Filed: October 31, 2013
    Publication date: April 2, 2015
    Applicant: Seagate Technology LLC
    Inventors: Yukiko Kubota, Timothy J. Klemmer, Kai Chieh Chang, Li Gao, Yinfeng Ding, Yingguo Peng, Jan-Ulrich Thiele
  • Patent number: 8988976
    Abstract: The embodiments disclose a patterned composite magnetic layer structure configured to use magnetic materials having differing temperature and magnetization characteristics in a recording device, wherein the patterned composite magnetic layer structure includes magnetic layers, at least one first magnetic material configured to be used in a particular order to reduce a recording temperature and configured to control and regulate coupling and decoupling of the magnetic layers and at least one second magnetic material with differing temperature characteristics is configured to control recording and erasing of data.
    Type: Grant
    Filed: October 16, 2013
    Date of Patent: March 24, 2015
    Assignee: Seagate Technology LLC
    Inventors: Xi Chen, Ganping Ju, Yingguo Peng, Timothy J. Klemmer, Yukiko Kubota, Jan-Ulrich Thiele, David S. Kuo, Kai-Chieh Chang, Kangkang Wang, Li Gao, Yinfeng Ding
  • Publication number: 20150016774
    Abstract: The embodiments disclose a stack feature of a stack configured to confine optical fields within and to a patterned plasmonic underlayer in the stack configured to guide light from a light source to regulate optical coupling.
    Type: Application
    Filed: October 16, 2013
    Publication date: January 15, 2015
    Applicant: SEAGATE TECHNOLOGY LLC
    Inventors: Ganping Ju, Chubing Peng, Xiaobin Zhu, Yingguo Peng, Yukiko A Kubota, Timothy J Klemmer, Jan-Ulrich Thiele, Michael A. Seigler, Werner Scholz, Kim Y. Lee, David S. Kuo, Koichi Wago
  • Publication number: 20150017482
    Abstract: The embodiments disclose a plasmonic cladding structure including at least one conformal plasmonic cladding structure wrapped around plural stack features of a recording device, wherein the conformal plasmonic cladding structure is configured to create a near-field transducer in close proximity to a recording head of the recording device, at least one conformal plasmonic cladding structure with substantially removed top surfaces of the stack features with exposed magnetic layer materials and a thermally insulating filler configured to be located between the stack features.
    Type: Application
    Filed: October 16, 2013
    Publication date: January 15, 2015
    Applicant: Seagate Technology LLC
    Inventors: Kim Y. Lee, Ganping Ju, Chubing Peng, Xiaobin Zhu, Yingguo Peng, Yukiko A. Kubota, Timothy J. Klemmer, Jan-Ulrich Thiele, Michael A. Seigler, Werner Scholz, David S. Kuo, Koichi Wago, Thomas P. Nolan
  • Publication number: 20150013946
    Abstract: The embodiments disclose at least one predetermined patterned layer configured to eliminate a physical path of lateral thermal bloom in a recording device, at least one gradient layer coupled to the patterned layer and configured to use materials with predetermined thermal conductivity for controlling a rate of dissipation and a path coupled to the gradient layer and configured to create a path of least thermal conduction resistance for directing dissipation along the path, wherein the path substantially regulates and prevents lateral thermal bloom.
    Type: Application
    Filed: October 16, 2013
    Publication date: January 15, 2015
    Applicant: SEAGATE TECHNOLOGY LLC
    Inventors: Ganping Ju, Xiaobin Zhu, Chubing Peng, Yukiko A. Kubota, Yingguo Peng, Timothy J. Klemmer, Jan-Ulrich Thiele, David S. Kuo, Bin Lu, Julius K. Hohlfeld
  • Publication number: 20150016237
    Abstract: The embodiments disclose a patterned composite magnetic layer structure configured to use magnetic materials having differing temperature and magnetization characteristics in a recording device, wherein the patterned composite magnetic layer structure includes magnetic layers, at least one first magnetic material configured to be used in a particular order to reduce a recording temperature and configured to control and regulate coupling and decoupling of the magnetic layers and at least one second magnetic material with differing temperature characteristics is configured to control recording and erasing of data.
    Type: Application
    Filed: October 16, 2013
    Publication date: January 15, 2015
    Applicant: SEAGATE TECHNOLOGY LLC
    Inventors: Xi Chen, Ganping Ju, Yingguo Peng, Timothy J. Klemmer, Yukiko A. Kubota, Jan-Ulrich Thiele, David S. Kuo, Kai-Chieh Chang, Kangkang Wang, Li Gao, Yinfeng Ding
  • Patent number: 8503126
    Abstract: A method includes activating a stress-effecting layer of a thin film structure, having the stress effecting layer adjacent to a magnetic layer, to induce a magneto-elastic anisotropy in the magnetic layer.
    Type: Grant
    Filed: January 18, 2012
    Date of Patent: August 6, 2013
    Assignee: Seagate Technology LLC
    Inventors: Yiao-Tee Hsia, Wei Peng, Timothy J. Klemmer
  • Publication number: 20120113541
    Abstract: A method includes activating a stress-effecting layer of a thin film structure, having the stress effecting layer adjacent to a magnetic layer, to induce a magneto-elastic anisotropy in the magnetic layer.
    Type: Application
    Filed: January 18, 2012
    Publication date: May 10, 2012
    Applicant: SEAGATE TECHNOLOGY LLC
    Inventors: Yiao-Tee Hsia, Wei Peng, Timothy J. Klemmer
  • Patent number: 8119265
    Abstract: A thin film structure, such as a magnetic recording media, having a magnetic layer and a stress-effecting layer is disclosed. The stress-effecting layer induces a magneto-elastic anisotropy in the magnetic layer. The stress-effecting layer can be activated by the application of an external stress and/or strain. The induced magneto-elastic anisotropy can transiently achieve and/or enhance a tilt angle of the medium. The medium can be a perpendicular magnetic recording medium, a longitudinal magnetic recording medium and/or a tilted magnetic recording medium. The magnetic recording media is suitable for use with a data storage system, such as a HAMR data storage system.
    Type: Grant
    Filed: November 2, 2005
    Date of Patent: February 21, 2012
    Assignee: Seagate Technology LLC
    Inventors: Yiao-Tee Hsia, Wei Peng, Timothy J. Klemmer
  • Patent number: 7986493
    Abstract: A magnetic recording medium with domain wall pinning sites including a substrate, a soft magnetic underlayer, and a magnetic recording layer overlying the soft magnetic underlayer. In one embodiment the magnetic recording layer has at least two grooves providing a track having first and second sidewalls formed by the grooves. The sidewalls provide a plurality of pinning sites formed between the sidewalls for pinning magnetic domain walls in the track. At least one of the pinning sites includes a first indentation in the first sidewall and a paired second indentation in the second sidewall. In one embodiment data can be stored within the magnetic recording layer by positioning a write head adjacent the track and inducing at least two magnetic domains defining a domain wall. The domain wall migrates to one of the pinning sites in the track.
    Type: Grant
    Filed: November 28, 2007
    Date of Patent: July 26, 2011
    Assignee: Seagate Technology LLC
    Inventors: Dieter Weller, Timothy J. Klemmer, Kim Y. Lee
  • Publication number: 20090135518
    Abstract: A magnetic recording medium with domain wall pinning sites including a substrate, a soft magnetic underlayer, and a magnetic recording layer overlying the soft magnetic underlayer. In one embodiment the magnetic recording layer has at least two grooves providing a track having first and second sidewalls formed by the grooves. The sidewalls provide a plurality of pinning sites formed between the sidewalls for pinning magnetic domain walls in the track. At least one of the pinning sites includes a first indentation in the first sidewall and a paired second indentation in the second sidewall. In one embodiment data can be stored within the magnetic recording layer by positioning a write head adjacent the track and inducing at least two magnetic domains defining a domain wall. The domain wall migrates to one of the pinning sites in the track.
    Type: Application
    Filed: November 28, 2007
    Publication date: May 28, 2009
    Inventors: Dieter Weller, Timothy J. Klemmer, Kim Y. Lee
  • Publication number: 20080254322
    Abstract: An apparatus includes a thermally insulating substrate, an energy absorbing layer on the thermally insulating substrate, and a flash annealed magnetic layer on the energy absorbing layer. The flash annealed magnetic layer may be configured for data storage. A method includes providing a thermally insulating substrate, depositing an energy absorbing layer on the thermally insulating substrate, depositing a magnetic layer on the energy absorbing layer, and flash annealing the magnetic layer.
    Type: Application
    Filed: April 11, 2007
    Publication date: October 16, 2008
    Applicant: Seagate Technology LLC
    Inventors: Timothy J. Klemmer, Yukiko Kubota
  • Patent number: 7153597
    Abstract: A data storage medium is provided according to the present invention for magnetic recording. The data storage medium includes a substrate having a locking pattern etched therein defining patterned regions. The patterned regions are chemically modified by depositing a self-assembled monolayer therein. A first layer of nanoparticles is provided in the patterned regions on top of the self-assembled monolayer and is chemically bonded to the substrate via the self-assembled monolayer. The first layer of nanoparticles is chemically modified using functional surfactant molecules applied thereto, such that a second layer of nanoparticles may be formed on top of the first layer and chemically bonded thereto via the functional surfactant molecules. Additional layers of nanoparticles may be applied by chemically modifying the top layer of nanoparticles utilizing the functional surfactant molecules and applying a further layer of nanoparticles thereto.
    Type: Grant
    Filed: October 9, 2003
    Date of Patent: December 26, 2006
    Assignee: Seagate Technology LLC
    Inventors: Xiaomin Yang, Earl C. Johns, Timothy J. Klemmer, Chao Liu, Dieter K. Weller
  • Patent number: 7094483
    Abstract: A magnetic storage media comprises a substrate supporting the layer of magnetic media having a tilted C-axis greater than approximately 25° with respect to surface normal and having a magnetic easy axis tilted at an angle at approximately greater than 30° from the substrate surface normal. The media includes an oblique deposited seedlayer structure directing tilted C-axis growth of the magnetic material layer independent of the angle of deposition of the magnetic material layer. The orientation C-axis and the magnetic easy axis of the media may be organized into circumferential or radial patterns on the substrate surface, and additionally may possess azimuthal symmetry.
    Type: Grant
    Filed: September 29, 2003
    Date of Patent: August 22, 2006
    Assignee: Seagate Technology LLC
    Inventors: Kalman Pelhos, Timothy J. Klemmer, Michael A. Seigler
  • Patent number: 6838195
    Abstract: A self-organized magnetic array includes a plurality of magnetic primary nanoparticles are arranged on the substrate in a self-organized magnetic array. A plurality of magnetic interstitial nanoparticles are positioned between at least some of the primary nanoparticles in the self-organized magnetic array. A method of making such an array is also provided.
    Type: Grant
    Filed: February 13, 2003
    Date of Patent: January 4, 2005
    Assignee: Seagate Technology LLC
    Inventors: Dieter K. Weller, Chao Liu, Timothy J. Klemmer
  • Patent number: 6822829
    Abstract: A perpendicular magnetic recording head includes a multilayered main write pole. The main write pole includes a first layer of material, a second layer of material, and an interlayer positioned between the first layer of material and the second layer of material. The second layer of material has a saturation magnetic moment greater than a saturation magnetic moment of the first layer of material.
    Type: Grant
    Filed: February 20, 2002
    Date of Patent: November 23, 2004
    Assignee: Seagate Technology LLC
    Inventors: Michael K. Minor, Timothy J. Klemmer
  • Patent number: 6795273
    Abstract: A magnetic recording head includes a write pole having alternating layers of Fe and Co and a return pole magnetically coupled to the write pole. The layers of Fe may have a thickness from about 1.0 angstroms to about 40.0 angstroms and the layers of Co may have a thickness from about 1.0 angstroms to about 20.0 angstroms. The write pole may have a saturation magnetization greater than about 2.45 Tesla. A method for forming a write pole for a magnetic recording head is also disclosed.
    Type: Grant
    Filed: January 6, 2003
    Date of Patent: September 21, 2004
    Assignee: Quantum Materials Design, Inc.
    Inventors: Michael K. Minor, Timothy J. Klemmer, Michael A. Seigler, Arthur J. Freeman
  • Publication number: 20040115481
    Abstract: A magnetic storage media comprises a substrate supporting the layer of magnetic media having a tilted C-axis greater than approximately 25° with respect to surface normal and having a magnetic easy axis tilted at an angle at approximately greater than 30° from the substrate surface normal. The media includes an oblique deposited seedlayer structure directing tilted C-axis growth of the magnetic material layer independent of the angle of deposition of the magnetic material layer. The orientation C-axis and the magnetic easy axis of the media may be organized into circumferential or radial patterns on the substrate surface, and additionally may possess azimuthal symmetry.
    Type: Application
    Filed: September 29, 2003
    Publication date: June 17, 2004
    Applicant: Seagate Technology LLC
    Inventors: Kalman Pelhos, Timothy J. Klemmer, Michael A. Seigler
  • Publication number: 20040071924
    Abstract: A data storage medium is provided according to the present invention for magnetic recording. The data storage medium includes a substrate having a locking pattern etched therein defining patterned regions. The patterned regions are chemically modified by depositing a self-assembled monolayer therein. A first layer of nanoparticles is provided in the patterned regions on top of the self-assembled monolayer and is chemically bonded to the substrate via the self-assembled monolayer. The first layer of nanoparticles is chemically modified using functional surfactant molecules applied thereto, such that a second layer of nanoparticles may be formed on top of the first layer and chemically bonded thereto via the functional surfactant molecules. Additional layers of nanoparticles may be applied by chemically modifying the top layer of nanoparticles utilizing the functional surfactant molecules and applying a further layer of nanoparticles thereto.
    Type: Application
    Filed: October 9, 2003
    Publication date: April 15, 2004
    Applicant: Seagate Technology LLC
    Inventors: Xiaomin Yang, Earl C. Johns, Timothy J. Klemmer, Chao Liu, Dieter K. Weller