Patents by Inventor Timothy J. Langlois

Timothy J. Langlois has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10471411
    Abstract: The present invention relates to porous substrate compositions and methods for producing such compositions. In one embodiment, the porous substrate composition of the present invention comprises sintered spherical particles of a substantially uniform size. The porous media compositions of the present invention comprise relatively randomly-ordered particles with a void fraction significantly higher than compositions with a more ordered, close-packed configuration. The present invention further relates to composite porous media compositions comprising two or more relatively discrete layers of sintered particles.
    Type: Grant
    Filed: July 2, 2015
    Date of Patent: November 12, 2019
    Assignee: Advanced Materials Technology
    Inventors: Andrew Scott Lawing, Timothy J. Langlois, Daniel Brian Messick, Jr., Brian M. Wagner
  • Publication number: 20160030923
    Abstract: The present invention relates to porous substrate compositions and methods for producing such compositions. In one embodiment, the porous substrate composition of the present invention comprises sintered spherical particles of a substantially uniform size. The porous media compositions of the present invention comprise relatively randomly-ordered particles with a void fraction significantly higher than compositions with a more ordered, close-packed configuration. The present invention further relates to composite porous media compositions comprising two or more relatively discrete layers of sintered particles.
    Type: Application
    Filed: July 2, 2015
    Publication date: February 4, 2016
    Inventors: Andrew Scott Lawing, Timothy J. Langlois, Daniel Brian Messick, JR., Brian M. Wagner
  • Publication number: 20090297853
    Abstract: A process for preparing nanoparticle coated surfaces including the steps of electrostatically coating surfaces with polyelectrolyte by exposing the surface to a solution or suspension of polyelectrolyte, removing excess non-bound polyelectrolyte, then further coating the particles with a multi-layer of charged nanoparticles by exposing the polyelectrolyte-coated surface to a fluid dispersion including the charged nanoparticles. The process steps can optionally be repeated thereby adding further layers of polyelectrolyte followed by nanoparticles as many times as desired to produce a second and subsequent layers. The polyelectrolyte has an opposite surface charge to the charged nanoparticles and a molecular weight at the ionic strength of the fluid that is effective so that the first, second, and subsequent layers independently comprise a multiplicity of nanoparticle layers that are thicker than monolayers.
    Type: Application
    Filed: June 23, 2009
    Publication date: December 3, 2009
    Applicant: Advanced Materials Technology, Inc.
    Inventors: Joseph J. Kirkland, Timothy J. Langlois
  • Publication number: 20080277346
    Abstract: A process for preparing nanoparticle coated surfaces including the steps of electrostatically coating surfaces with polyelectrolyte by exposing the surface to a solution or suspension of polyelectrolyte, removing excess non-bound polyelectrolyte, then further coating the particles with a multi-layer of charged nanoparticles by exposing the polyelectrolyte-coated surface to a fluid dispersion including the charged nanoparticles. The process steps can optionally be repeated thereby adding further layers of polyelectrolyte followed by nanoparticles as many times as desired to produce a second and subsequent layers. The polyelectrolyte has an opposite surface charge to the charged nanoparticles and a molecular weight at the ionic strength of the fluid that is effective so that the first, second, and subsequent layers independently comprise a multiplicity of nanoparticle layers that are thicker than monolayers.
    Type: Application
    Filed: February 13, 2007
    Publication date: November 13, 2008
    Inventors: Joseph J. Kirkland, Timothy J. Langlois
  • Publication number: 20070189944
    Abstract: The present invention relates to microparticles, particularly spherical silica microparticles, which may be useful in liquid chromatography. Specifically, the microparticles include a solid core and an outer porous shell surrounding and irreversibly joined to the core. The shell is composed of a plurality of colloidal nanoparticles, which are applied using an electrostatic multi-multilayering method. The resulting microparticles have a small particle diameter, such as about 1 ?m to 3.5 ?m, a high particle density, such as about 1.2 g/cc to 1.9 g/cc, and a high surface area, such as about 50 m2/g to 165 m2/g. These microparticles can be used to form packed beds and liquid chromatographic columns, which are more efficient and rugged than conventional liquid chromatographic columns.
    Type: Application
    Filed: February 13, 2007
    Publication date: August 16, 2007
    Inventors: Joseph J. Kirkland, Timothy J. Langlois
  • Patent number: 7128884
    Abstract: Highly purified, porous silica microspheres contain functional groups which are capable of selectively binding to reaction impurities, such as excess reactant or reaction by-products, which are contained in a reaction medium. The reaction impurities can thereby be efficiently removed from the reaction medium, providing a convenient method for product purification.
    Type: Grant
    Filed: October 28, 2003
    Date of Patent: October 31, 2006
    Assignee: Agilent Technologies, Inc.
    Inventors: Joseph J. Kirkland, Timothy J. Langlois, Qunjie Wang
  • Patent number: 7041623
    Abstract: Highly purified, porous silica microspheres contain functional groups which are capable of selectively binding to reaction impurities, such as excess reactant or reaction by-products, which are contained in a reaction medium. The reaction impurities can thereby be efficiently removed from the reaction medium, providing a convenient method for product purification.
    Type: Grant
    Filed: October 23, 2002
    Date of Patent: May 9, 2006
    Assignee: Agilent Technologies, Inc.
    Inventors: Joseph J. Kirkland, Timothy J. Langlois, Ounjie Wang
  • Publication number: 20030136739
    Abstract: Highly purified, porous silica microspheres contain functional groups which are capable of selectively binding to reaction impurities, such as excess reactant or reaction by-products, which are contained in a reaction medium. The reaction impurities can thereby be efficiently removed from the reaction medium, providing a convenient method for product purification.
    Type: Application
    Filed: October 23, 2002
    Publication date: July 24, 2003
    Inventors: Joseph J. Kirkland, Timothy J. Langlois, Qunjie Wang
  • Patent number: 6482324
    Abstract: Highly purified, porous silica microspheres contain functional groups which are capable of selectively binding to reaction impurities, such as excess reactant or reaction by-products, which are contained in a reaction medium. The reaction impurities can thereby be efficiently removed from the reaction medium, providing a convenient method for product purification.
    Type: Grant
    Filed: December 26, 2001
    Date of Patent: November 19, 2002
    Assignee: Agilent Technologies, Inc.
    Inventors: Joseph J. Kirkland, Timothy J. Langlois, Ounjie Wang
  • Publication number: 20020132119
    Abstract: Highly purified, porous silica microspheres contain functional groups which are capable of selectively binding to reaction impurities, such as excess reactant or reaction by-products, which are contained in a reaction medium. The reaction impurities can thereby be efficiently removed from the reaction medium, providing a convenient method for product purification.
    Type: Application
    Filed: December 26, 2001
    Publication date: September 19, 2002
    Inventors: Joseph J. Kirkland, Timothy J. Langlois, Ounjie Wang