Patents by Inventor Timothy J. Peckham

Timothy J. Peckham has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11970590
    Abstract: Described herein are anionic phenylene oligomers and polymers, and devices including these materials. The oligomers and polymers can be prepared in a convenient and well-controlled manner, and can be used in cation exchange membranes. Also described is the controlled synthesis of anionic phenylene monomers and their use in synthesizing anionic oligomers and polymers, with precise control of the position and number of anionic groups.
    Type: Grant
    Filed: January 17, 2023
    Date of Patent: April 30, 2024
    Inventors: Steven Holdcroft, Thomas J. G. Skalski, Michael Adamski, Benjamin Britton, Timothy J. Peckham
  • Publication number: 20240117132
    Abstract: Described herein are anionic phenylene oligomers and polymers, and devices including these materials. The oligomers and polymers can be prepared in a convenient and well-controlled manner, and can be used in cation exchange membranes. Also described is the controlled synthesis of anionic phenylene monomers and their use in synthesizing anionic oligomers and polymers, with precise control of the position and number of anionic groups.
    Type: Application
    Filed: September 11, 2023
    Publication date: April 11, 2024
    Applicant: Simon Fraser University
    Inventors: Steven Holdcroft, Thomas J.G. Skalski, Michael Adamski, Benjamin Britton, Timothy J. Peckham
  • Patent number: 11802187
    Abstract: Described herein are anionic phenylene oligomers and polymers, and devices including these materials. The oligomers and polymers can be prepared in a convenient and well-controlled manner, and can be used in cation exchange 5 membranes. Also described is the controlled synthesis of anionic phenylene monomers and their use in synthesizing anionic oligomers and polymers, with precise control of the position and number of anionic groups.
    Type: Grant
    Filed: April 10, 2018
    Date of Patent: October 31, 2023
    Assignee: Simon Fraser University
    Inventors: Steven Holdcroft, Thomas J. G. Skalski, Michael Adamski, Benjamin Britton, Timothy J. Peckham
  • Publication number: 20230159716
    Abstract: Described herein are anionic phenylene oligomers and polymers, and devices including these materials. The oligomers and polymers can be prepared in a convenient and well-controlled manner, and can be used in cation exchange membranes. Also described is the controlled synthesis of anionic phenylene monomers and their use in synthesizing anionic oligomers and polymers, with precise control of the position and number of anionic groups.
    Type: Application
    Filed: January 17, 2023
    Publication date: May 25, 2023
    Applicant: Simon Fraser University
    Inventors: Steven Holdcroft, Thomas J.G. Skalski, Michael Adamski, Benjamin Britton, Timothy J. Peckham
  • Publication number: 20200362129
    Abstract: Described herein are anionic phenylene oligomers and polymers, and devices including these materials. The oligomers and polymers can be prepared in a convenient and well-controlled manner, and can be used in cation exchange 5 membranes. Also described is the controlled synthesis of anionic phenylene monomers and their use in synthesizing anionic oligomers and polymers, with precise control of the position and number of anionic groups.
    Type: Application
    Filed: April 10, 2018
    Publication date: November 19, 2020
    Applicant: Simon Fraser University
    Inventors: Steven Holdcroft, Thomas J.G. Skalski, Michael Adamski, Benjamin Britton, Timothy J. Peckham
  • Patent number: 7977392
    Abstract: A water insoluble additive for improving the performance of an ion-exchange membrane, such as in the context of the high temperature operation of electrochemical fuel cells. The insoluble additive comprises a metal oxide cross-linked matrix having proton conducting groups covalently attached to the matrix through linkers. In one embodiment, the metal is silicon and the cross-linked matrix is a siloxane cross-linked matrix containing silicon atoms cross-linked by multiple disiloxy bonds and having proton conducting groups covalently attached to the silicon atoms through alkanediyl linkers.
    Type: Grant
    Filed: December 20, 2006
    Date of Patent: July 12, 2011
    Assignee: Daimler AG
    Inventors: Sean M. MacKinnon, Scott J. McDermid, Lukas M. Bonorand, Timothy J. Peckham, Keping Wang, Jing Li
  • Patent number: 7601759
    Abstract: A water insoluble additive for improving the performance of an ion-exchange membrane, such as in the context of the high temperature operation of electrochemical fuel cells. The insoluble additive comprises a metal oxide cross-linked matrix having acid groups covalently attached to the matrix through linkers. In one embodiment, the metal is silicon and the cross-linked matrix is a siloxane cross-linked matrix containing silicon atoms cross-linked by multiple disiloxy bonds and having acid groups covalently attached to the silicon atoms through alkanediyl linkers.
    Type: Grant
    Filed: October 8, 2004
    Date of Patent: October 13, 2009
    Assignee: BDF IP Holdings Ltd.
    Inventors: Sean M. MacKinnon, Timothy J. Peckham, Charles Stone
  • Patent number: 6653515
    Abstract: &agr;,&bgr;,&bgr;-Trifluorostyrene and derivatives thereof synthesized in two steps from 1,1,1,2-tetrafluoroethylene. In the first step, 1,1,1,2-tetrafluoroethylene is reacted with a base, a metal salt such as zinc chloride and an optionally amine to form a trifluorovinyl metal complex. In the second step, the trifluorostyrene or derivative is obtained by reacting the trifluorovinyl metal complex with an aryl transfer agent such as, for example, an aryl triflate or an aryl halide, in the presence of a metal catalyst and optionally a coordinating ligand. Both steps may be carried out in one reactor.
    Type: Grant
    Filed: December 14, 2001
    Date of Patent: November 25, 2003
    Assignee: Ballard Power Systems Inc.
    Inventors: Charles Stone, Timothy J. Peckham, Donald J. Burton, Anilkumar Raghavanpillai
  • Publication number: 20030144439
    Abstract: &agr;,&bgr;,&bgr;-Trifluorostyrene and derivatives thereof synthesized in two steps from 1,1,1,2-tetrafluoroethylene. In the first step, 1,1,1,2-tetrafluoroethylene is reacted with a base, a metal salt such as zinc chloride and an optionally amine to form a trifluorovinyl metal complex. In the second step, the trifluorostyrene or derivative is obtained by reacting the trifluorovinyl metal complex with an aryl transfer agent such as, for example, an aryl triflate or an aryl halide, in the presence of a metal catalyst and optionally a coordinating ligand. Both steps may be carried out in one reactor.
    Type: Application
    Filed: December 14, 2001
    Publication date: July 31, 2003
    Applicant: Ballard Power Systems Inc.
    Inventors: Charles Stone, Timothy J. Peckham, Donald J. Burton, Anilkumar Raghavanpillai