Patents by Inventor Timothy James ULRICH, II

Timothy James ULRICH, II has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220010662
    Abstract: Strain information may define strain of a material to stress. The strain of the material may be decomposed into classical strain, hysteretic strain, and residual strain. The classical strain, the hysteretic strain, and the residual strain may be used to facilitate modeling of the material. For example, the classical strain, the hysteretic strain, and the residual strain of a rock may be used to facilitate modeling of a subsurface region that includes the rock such as a reservoir simulation to predict hydrocarbon recovery.
    Type: Application
    Filed: July 9, 2021
    Publication date: January 13, 2022
    Inventors: Robert A. Guyer, Timothy James Ulrich, II, James A. Ten Cate, Harvey Edwin Goodman
  • Patent number: 11086040
    Abstract: A pulsed sinusoidal acoustic signal transmitted through a subsurface volume of a wellbore may be detected. A time-reversed acoustic signal of the pulsed sinusoidal acoustic signal may be transmitted through the subsurface volume of the wellbore. Transmission of the time-reversed acoustic signal through the subsurface volume of the wellbore may result in generation of focused acoustic signal in the subsurface volume of the wellbore. The focused acoustic signal in the subsurface volume of the wellbore may be detected, and the integrity of the wellbore may be determined based on the focused acoustic signal in the subsurface volume of the wellbore.
    Type: Grant
    Filed: September 24, 2020
    Date of Patent: August 10, 2021
    Assignees: TRIAD NATIONAL SECURITY, LLC, CHEVRON U.S.A. INC.
    Inventors: Timothy James Ulrich, II, Harvey Edwin Goodman
  • Patent number: 11067711
    Abstract: Apparatus (10) and methods for measurement of pore pressure in rock formations through a metal borehole casing (32) after a well is cased and cemented, are described. Such measurements may be accomplished by using the Dynamic Acoustic Elasticity (DAE) method for characterizing nonlinear parameters by perturbing a selected rock formation region with a High Amplitude, Low Frequency (HALF) acoustic strain wave, and probing this region using a Low Amplitude, High Frequency (LAHF) acoustic wave (18), (22). Time reversal techniques (36) may be employed for focusing acoustic energy into the formation in the vicinity of the pipe or open hole. The change in wave speed of the probe pulses as the HALF induced strain wave oscillation propagates through the formation, as a function of the induced strain, may be used to determine the nonlinear elastic parameters ?, ?, ?, and A of the pore pressure, from which the pore pressure may be determined in the region of the HALF wave.
    Type: Grant
    Filed: March 26, 2017
    Date of Patent: July 20, 2021
    Assignees: TRIAD NATIONAL SECURITY, LLC, CHEVRON U.S.A. INC.
    Inventors: Harvey E. Goodman, Timothy James Ulrich, II, Robert A. Guyer, Paul A. Johnson, Marcel C. Remillieux, Pierre-Yves Le Bas
  • Patent number: 11029435
    Abstract: Apparatus and methods for measurement of pore pressure in rock formations through an open, or cemented and/or cased, borehole are described. Such measurements are achieved using the Dynamic Acoustic Elasticity (DAE) method for characterizing nonlinear parameters by perturbing a selected rock formation volume with a High Amplitude, Low Frequency (HALF) acoustic strain wave, and probing this volume using a Low Amplitude, High Frequency (LAHF) acoustic wave. Time reversal techniques may be employed for focusing acoustic energy Into the formation in the vicinity of the pipe or open hole.
    Type: Grant
    Filed: October 24, 2017
    Date of Patent: June 8, 2021
    Assignees: TRIAD NATIONAL SECURITY, LLC, CHEVRON U.S.A. INC.
    Inventors: Harvey Edwin Goodman, Timothy James Ulrich, II, Peter Roberts, Marcel C. Remillieux, Paul Allan Johnson, Pierre-Yves Le Bas, Robert A. Guyer
  • Publication number: 20210018643
    Abstract: A pulsed sinusoidal acoustic signal transmitted through a subsurface volume of a wellbore may be detected. A time-reversed acoustic signal of the pulsed sinusoidal acoustic signal may be transmitted through the subsurface volume of the wellbore. Transmission of the time-reversed acoustic signal through the subsurface volume of the wellbore may result in generation of focused acoustic signal in the subsurface volume of the wellbore. The focused acoustic signal in the subsurface volume of the wellbore may be detected, and the integrity of the wellbore may be determined based on the focused acoustic signal in the subsurface volume of the wellbore.
    Type: Application
    Filed: September 24, 2020
    Publication date: January 21, 2021
    Inventors: Timothy James ULRICH, II, Harvey Edwin GOODMAN