Patents by Inventor Timothy John Klemmer

Timothy John Klemmer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10453487
    Abstract: A stack includes a substrate and a magnetic recording layer. Disposed between the substrate and magnetic recording layer is an MgO—Ti(ON) layer.
    Type: Grant
    Filed: December 10, 2015
    Date of Patent: October 22, 2019
    Assignee: Seagate Technology LLC
    Inventors: Yukiko Kubota, Timothy John Klemmer, Kai Chieh Chang, Li Gao, Yinfeng Ding, Yingguo Peng, Jan-Ulrich Thiele
  • Patent number: 9940962
    Abstract: In some embodiments, a thermally assisted data recording medium has a recording layer formed of iron (Fe), platinum (Pt) and a transition metal T selected from a group consisting of Rhodium (Rh), Ruthenium (Ru), Osmium (Os) and Iridium (Ir) to substitute for a portion of the Pt content as FeYPtY-XTX with Y in the range of from about 20 at % to about 80 at % and X in the range of from about 0 at % to about 20 at %.
    Type: Grant
    Filed: August 28, 2015
    Date of Patent: April 10, 2018
    Assignee: Seagate Technology LLC
    Inventors: Jan-Ulrich Thiele, Yinfeng Ding, YingGuo Peng, Kai-Chieh Chang, Timothy John Klemmer, Li Gao, Yukiko Kubota, Ganping Ju
  • Publication number: 20160099016
    Abstract: A stack includes a substrate and a magnetic recording layer. Disposed between the substrate and magnetic recording layer is an MgO—Ti(ON) layer.
    Type: Application
    Filed: December 10, 2015
    Publication date: April 7, 2016
    Inventors: Yukiko Kubota, Timothy John Klemmer, Kai Chieh Chang, Li Gao, Yinfeng Ding, Yingguo Peng, Jan-Ulrich Thiele
  • Publication number: 20160064022
    Abstract: In some embodiments, a thermally assisted data recording medium has a recording layer formed of iron (Fe), platinum (Pt) and a transition metal T selected from a group consisting of Rhodium (Rh), Ruthenium (Ru), Osmium (Os) and Iridium (Ir) to substitute for a portion of the Pt content as FeYPtY-XTX with Y in the range of from about 20 at % to about 80 at % and X in the range of from about 0 at % to about 20 at %.
    Type: Application
    Filed: August 28, 2015
    Publication date: March 3, 2016
    Inventors: Jan-Ulrich Thiele, Yinfeng Ding, YingGuo Peng, Kai-Chieh Chang, Timothy John Klemmer, Li Gao, Yukiko Kubota, Ganping Ju
  • Patent number: 8765273
    Abstract: A data media may generally be configured in accordance with various embodiments with contactingly adjacent first and second heatsink layers that are tuned with a common crystallographic orientation and with different thermal conductivities to provide a predetermined thermal gradient. The data media may further be configured with a recording layer formed with the common crystallographic orientation adjacent the first and second heatsink layers.
    Type: Grant
    Filed: October 17, 2012
    Date of Patent: July 1, 2014
    Assignee: Seagate Technology LLC
    Inventors: Yukiko Kubota, Xiaobin Zhu, Kai-Chieh Chang, Yingguo Peng, Yinfeng Ding, Timothy John Klemmer, Jan-Ulrich Thiele, Ganping Ju, Qihong Wu, Hassib Amini
  • Patent number: 8383254
    Abstract: An apparatus includes a substrate, a magnetically soft underlayer on the substrate, and a plurality of generally cubic FePt nanoparticles on the magnetically soft underlayer, wherein the nanoparticles have a magnetization in a direction substantially normal to a surface of the magnetically soft underlayer. The FePt nanoparticles can have magnetically easy axes perpendicular to the surface of the soft underlayer.
    Type: Grant
    Filed: September 28, 2010
    Date of Patent: February 26, 2013
    Assignee: Seagate Technology LLC
    Inventors: Nisha Shukla, Timothy John Klemmer, Dieter Klaus Weller, Chao Liu
  • Publication number: 20110086195
    Abstract: An apparatus includes a substrate, a magnetically soft underlayer on the substrate, and a plurality of generally cubic FePt nanoparticles on the magnetically soft underlayer, wherein the nanoparticles have a magnetization in a direction substantially normal to a surface of the magnetically soft underlayer. The FePt nanoparticles can have magnetically easy axes perpendicular to the surface of the soft underlayer.
    Type: Application
    Filed: September 28, 2010
    Publication date: April 14, 2011
    Applicant: SEAGATE TECHNOLOGY LLC
    Inventors: Nisha Shukla, Timothy John Klemmer, Dieter Klaus Weller, Chao Liu
  • Patent number: 7807217
    Abstract: A method comprises: heating a solution of platinum acetylacetonate, Fe(CO)5, oleic acid, and oleylamine in dichlorobenzene to a reflux temperature, refluxing the solution, and using the solution to deposit FePt nanoparticles. A magnetic storage medium that includes cubic FePt particles is also provided.
    Type: Grant
    Filed: July 5, 2006
    Date of Patent: October 5, 2010
    Assignee: Seagate Technology LLC
    Inventors: Nisha Shukla, Timothy John Klemmer, Dieter Klaus Weller, Chao Liu
  • Publication number: 20100080895
    Abstract: A method comprises: heating a solution of platinum acetylacetonate, Fe(CO)5, oleic acid, and oleylamine in dichlorobenzene to a reflux temperature, refluxing the solution, and using the solution to deposit FePt nanoparticles. A magnetic storage medium that includes cubic FePt particles is also provided.
    Type: Application
    Filed: July 5, 2006
    Publication date: April 1, 2010
    Applicant: Seagate Technology LLC
    Inventors: Nisha Shukla, Timothy John Klemmer, Dieter Klaus Weller, Chao Liu
  • Patent number: 6849349
    Abstract: Magnetic films having magnetic regions and non-magnetic regions are disclosed. The film is subjected to ion irradiation in order to produce chemically disordered regions in the film. The irradiated disordered regions may correspond to the non-magnetic regions of the film. Alternatively, the irradiated disordered regions may correspond to the magnetic regions of the film. In one embodiment, portions of a magnetic CrPt3 film are converted to non-magnetic regions by irradiating the regions with boron ions which disorder the CrPt3 film in the treated regions. The film may be patterned into magnetic regions and non-magnetic regions for applications such as magnetic recording media in computer disc drive systems.
    Type: Grant
    Filed: October 21, 2002
    Date of Patent: February 1, 2005
    Assignee: Carnegie Mellon University
    Inventors: Timothy John Klemmer, Ganping Ju, René Johannes Marinus van de Veerdonk, Todd Dennis Leonhardt, David Eugene Laughlin
  • Patent number: 6835464
    Abstract: A perpendicular exchange biased device comprises a layer of buffer material on a surface of a substrate, a layer of ferromagnetic material on a surface of the buffer layer, wherein the magnetization of the ferromagnetic layer lies in a direction perpendicular to the plane of the layer of ferromagnetic material, and a layer of antiferromagnetic material on a surface of the layer of ferromagnetic material. A method of making a perpendicular exchange biased device comprising positioning a layer of buffer material on a surface of a substrate, positioning a layer of ferromagnetic material on a surface of the layer of buffer material, wherein the magnetization of the ferromagnetic layer lies in a direction perpendicular to the plane of the layer of ferromagnetic material, and positioning a layer of antiferromagnetic material on a surface of the layer of ferromagnetic material is also included.
    Type: Grant
    Filed: September 19, 2002
    Date of Patent: December 28, 2004
    Assignee: Seagate Technology LLC
    Inventors: Thomas F. Ambrose, Timothy John Klemmer, Rene Johannes Marinus van de Veerdonk, Gregory John Parker, James K. Howard
  • Publication number: 20030228491
    Abstract: A perpendicular exchange biased device comprises a layer of buffer material on a surface of a substrate, a layer of ferromagnetic material on a surface of the buffer layer, wherein the magnetization of the ferromagnetic layer lies in a direction perpendicular to the plane of the layer of ferromagnetic material, and a layer of antiferromagnetic material on a surface of the layer of ferromagnetic material. A method of making a perpendicular exchange biased device comprising positioning a layer of buffer material on a surface of a substrate, positioning a layer of ferromagnetic material on a surface of the layer of buffer material, wherein the magnetization of the ferromagnetic layer lies in a direction perpendicular to the plane of the layer of ferromagnetic material, and positioning a layer of antiferromagnetic material on a surface of the layer of ferromagnetic material is also included.
    Type: Application
    Filed: September 19, 2002
    Publication date: December 11, 2003
    Inventors: Thomas F. Ambrose, Timothy John Klemmer, Rene Johannes Marinus van de Veerdonk, Gregory John Parker, James K. Howard
  • Publication number: 20030113524
    Abstract: Magnetic films having magnetic regions and non-magnetic regions are disclosed. The film is subjected to ion irradiation in order to produce chemically disordered regions in the film. The irradiated disordered regions may correspond to the non-magnetic regions of the film. Alternatively, the irradiated disordered regions may correspond to the magnetic regions of the film. In one embodiment, portions of a magnetic CrPt3 film are converted to non-magnetic regions by irradiating the regions with boron ions which disorder the CrPt3 film in the treated regions. The film may be patterned into magnetic regions and non-magnetic regions for applications such as magnetic recording media in computer disc drive systems.
    Type: Application
    Filed: October 21, 2002
    Publication date: June 19, 2003
    Inventors: Timothy John Klemmer, Ganping Ju, Rene Johannes Marinus van de Veerdonk, Todd Dennis Leonhardt, David Eugene Laughlin