Patents by Inventor Timothy K. Dashwood

Timothy K. Dashwood has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240107000
    Abstract: Techniques are disclosed for addressing “stereoscopic window violations” in stereoscopic multimedia content. Stereoscopic window violations result in the stereoscopic effect becoming “broken” for the viewer and may occur, e.g., when the left and right stereo eye views in the stereoscopic content are mismatched. Stereoscopic mismatch often occurs at the edges of the left and right eye video image frames (wherein, e.g., a depicted shape may become cut off for a left eye view but not a corresponding right eye view). According to the techniques disclosed herein, rather than permanently masking or otherwise editing the stereoscopic video content to account for any window violations, accompanying stereoscopic window violation metadata information may be generated for the stereoscopic video, which may be used to define a particular geometry for each left and right eye video image frame pair, and used at playback time to crop, mask, or otherwise modify the video image frames.
    Type: Application
    Filed: September 19, 2023
    Publication date: March 28, 2024
    Inventors: Christopher L. Flick, Timothy K. Dashwood
  • Publication number: 20220327781
    Abstract: In one implementation, a method involves tessellating a surface of a 3D object by identifying vertices having 3D positions. The method transforms the 3D positions into positions for a first sphere-based projection for a left eye viewpoint and positions for a second sphere-based projection for a right eye viewpoint. Transforming the 3D positions of the vertices involves transforming the vertices based on a user orientation (i.e., camera position) and differences left and right eye viewpoints (e.g., based on interaxial distance and convergence angle). The method further renders a stereoscopic 360° rendering of the 3D object based on the first sphere-based projection for the left eye viewpoint and the second sphere-based projection for the right eye viewpoint. For example, an equirectangular representation of the first sphere-based projection can be combined with an equirectangular representation of the second sphere-based projection to provide a file defining a stereoscopic 360° image.
    Type: Application
    Filed: June 27, 2022
    Publication date: October 13, 2022
    Inventors: Stuart M. Pomerantz, Timothy K. Dashwood
  • Patent number: 11417060
    Abstract: In one implementation, a method involves tessellating a surface of a 3D object by identifying vertices having 3D positions. The method transforms the 3D positions into positions for a first sphere-based projection for a left eye viewpoint and positions for a second sphere-based projection for a right eye viewpoint. Transforming the 3D positions of the vertices involves transforming the vertices based on a user orientation (i.e., camera position) and differences left and right eye viewpoints (e.g., based on interaxial distance and convergence angle). The method further renders a stereoscopic 360° rendering of the 3D object based on the first sphere-based projection for the left eye viewpoint and the second sphere-based projection for the right eye viewpoint. For example, an equirectangular representation of the first sphere-based projection can be combined with an equirectangular representation of the second sphere-based projection to provide a file defining a stereoscopic 360° image.
    Type: Grant
    Filed: August 20, 2020
    Date of Patent: August 16, 2022
    Assignee: Apple Inc.
    Inventors: Stuart M. Pomerantz, Timothy K. Dashwood
  • Publication number: 20210407195
    Abstract: In one implementation, a method involves tessellating a surface of a 3D object by identifying vertices having 3D positions. The method transforms the 3D positions into positions for a first sphere-based projection for a left eye viewpoint and positions for a second sphere-based projection for a right eye viewpoint. Transforming the 3D positions of the vertices involves transforming the vertices based on a user orientation (i.e., camera position) and differences left and right eye viewpoints (e.g., based on interaxial distance and convergence angle). The method further renders a stereoscopic 360° rendering of the 3D object based on the first sphere-based projection for the left eye viewpoint and the second sphere-based projection for the right eye viewpoint. For example, an equirectangular representation of the first sphere-based projection can be combined with an equirectangular representation of the second sphere-based projection to provide a file defining a stereoscopic 360° image.
    Type: Application
    Filed: August 20, 2020
    Publication date: December 30, 2021
    Inventors: Stuart M. Pomerantz, Timothy K. Dashwood
  • Publication number: 20200380778
    Abstract: In one implementation, a method involves tessellating a surface of a 3D object by identifying vertices having 3D positions. The method transforms the 3D positions into positions for a first sphere-based projection for a left eye viewpoint and positions for a second sphere-based projection for a right eye viewpoint. Transforming the 3D positions of the vertices involves transforming the vertices based on a user orientation (i.e., camera position) and differences left and right eye viewpoints (e.g., based on interaxial distance and convergence angle). The method further renders a stereoscopic 360° rendering of the 3D object based on the first sphere-based projection for the left eye viewpoint and the second sphere-based projection for the right eye viewpoint. For example, an equirectangular representation of the first sphere-based projection can be combined with an equirectangular representation of the second sphere-based projection to provide a file defining a stereoscopic 360° image.
    Type: Application
    Filed: August 20, 2020
    Publication date: December 3, 2020
    Inventors: Stuart M. Pomerantz, Timothy K. Dashwood
  • Patent number: 10783706
    Abstract: In one implementation, a method involves tessellating a surface of a 3D object by identifying vertices having 3D positions. The method transforms the 3D positions into positions for a first sphere-based projection for a left eye viewpoint and positions for a second sphere-based projection for a right eye viewpoint. Transforming the 3D positions of the vertices involves transforming the vertices based on a user orientation (i.e., camera position) and differences left and right eye viewpoints (e.g., based on interaxial distance and convergence angle). The method further renders a stereoscopic 360° rendering of the 3D object based on the first sphere-based projection for the left eye viewpoint and the second sphere-based projection for the right eye viewpoint. For example, an equirectangular representation of the first sphere-based projection can be combined with an equirectangular representation of the second sphere-based projection to provide a file defining a stereoscopic 360° image.
    Type: Grant
    Filed: December 6, 2018
    Date of Patent: September 22, 2020
    Assignee: Apple Inc.
    Inventors: Stuart M. Pomerantz, Timothy K. Dashwood
  • Publication number: 20190180504
    Abstract: In one implementation, a method involves tessellating a surface of a 3D object by identifying vertices having 3D positions. The method transforms the 3D positions into positions for a first sphere-based projection for a left eye viewpoint and positions for a second sphere-based projection for a right eye viewpoint. Transforming the 3D positions of the vertices involves transforming the vertices based on a user orientation (i.e., camera position) and differences left and right eye viewpoints (e.g., based on interaxial distance and convergence angle). The method further renders a stereoscopic 360° rendering of the 3D object based on the first sphere-based projection for the left eye viewpoint and the second sphere-based projection for the right eye viewpoint. For example, an equirectangular representation of the first sphere-based projection can be combined with an equirectangular representation of the second sphere-based projection to provide a file defining a stereoscopic 360° image.
    Type: Application
    Filed: December 6, 2018
    Publication date: June 13, 2019
    Inventors: Stuart M. Pomerantz, Timothy K. Dashwood