Patents by Inventor Timothy Kueper

Timothy Kueper has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8709548
    Abstract: A method of making a sputtering target includes providing a backing structure, and forming a copper indium gallium sputtering target material on the backing structure by spray forming.
    Type: Grant
    Filed: October 19, 2010
    Date of Patent: April 29, 2014
    Assignee: Hanergy Holding Group Ltd.
    Inventors: A. Piers Newbery, Timothy Kueper, Daniel R. Juliano
  • Patent number: 8399286
    Abstract: A method of making a semiconductor device includes providing a web substrate, forming a first semiconductor layer of a first conductivity type over the web substrate, forming a second semiconductor layer of a second conductivity type over a first side of the first semiconductor layer, forming a first electrode layer over the second semiconductor layer, forming a handle web substrate over the first electrode layer, delaminating the web substrate from the first semiconductor layer after the step of forming the handle web substrate, where at least one opening extends through the first and the second semiconductor layers, and forming a second electrode layer over a second side of the first semiconductor layer such that the first and second electrode layers are in electrical contact with each other.
    Type: Grant
    Filed: December 14, 2009
    Date of Patent: March 19, 2013
    Assignee: MiaSole
    Inventor: Timothy Kueper
  • Publication number: 20110139222
    Abstract: A method of making a semiconductor device includes providing a web substrate, forming a first semiconductor layer of a first conductivity type over the web substrate, forming a second semiconductor layer of a second conductivity type over a first side of the first semiconductor layer, forming a first electrode layer over the second semiconductor layer, forming a handle web substrate over the first electrode layer, delaminating the web substrate from the first semiconductor layer after the step of forming the handle web substrate, where at least one opening extends through the first and the second semiconductor layers, and forming a second electrode layer over a second side of the first semiconductor layer such that the first and second electrode layers are in electrical contact with each other.
    Type: Application
    Filed: December 14, 2009
    Publication date: June 16, 2011
    Inventor: Timothy Kueper
  • Publication number: 20100282276
    Abstract: Provided are methods and apparatuses for processing photovoltaic cell metallic substrates to remove various surface defects. In certain embodiments, a thin stainless steel foil is polished using a proposed method leading to a substantial, e.g., twice or more, increase in its surface gloss. In certain embodiments, a method in accordance with the present invention involves contacting a substrate surface with a fixed-abrasive filament roller brush. The brush may be a close-wound coil brush. The brush includes filaments carrying 5-20 micrometer abrasive particles that are permanently fixed in the brush filaments, for example a polymer base material, such as nylon. The particles may be made of silicon carbide and/or other abrasive materials. In certain embodiments, a substrate surface is polished using a series of roller brushes, at least two of which rotate in different directions with respect to that surface.
    Type: Application
    Filed: July 23, 2010
    Publication date: November 11, 2010
    Applicant: MIASOLE
    Inventors: Timothy Kueper, Joseph Laia, Jason Corneille, Philip Scott
  • Publication number: 20100258173
    Abstract: A method for fabricating a solar cell. The method includes providing a thin metallic substrate in roll form. The method also includes applying an abrasive grit to a surface of the thin metallic substrate. The method includes mechanical-polishing the surface with the abrasive grit such that the surface is polished to remove at least one defect from the surface. Mechanical-polishing the surface of the thin metallic substrate is by a roll-to-roll polishing process of the surface of the thin metallic substrate. Moreover, the method includes depositing an absorber layer of the solar cell on the thin metallic substrate.
    Type: Application
    Filed: April 13, 2009
    Publication date: October 14, 2010
    Inventors: Joseph LAIA, Paul Shufflebotham, Daniel R. Juliano, Robert Martinson, Timothy Kueper