Patents by Inventor Timothy L. Tibor

Timothy L. Tibor has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150044377
    Abstract: A die and a method for impregnating fiber rovings with a polymer resin are disclosed. The die includes a manifold assembly (220), an impregnation zone (250), and a gate passage (270). The manifold assembly (220) flows the resin therethrough, and includes a channel (222). The impregnation zone (250) is in fluid communication with the manifold assembly (220), and is configured to impregnate the roving with the resin. The gate passage (270) is between the manifold assembly (220) and the impregnation zone (250), and flows the resin from the manifold assembly (220) such that the resin coats the roving. The gate passage (270) includes a projection (300). The projection (300) is configured to diffuse resin flowing through the gate passage (270).
    Type: Application
    Filed: April 26, 2012
    Publication date: February 12, 2015
    Applicant: Ticona LLC
    Inventors: Timothy L. Tibor, Timothy A. Regan, Aaron H. Johnson
  • Publication number: 20140175696
    Abstract: Systems and methods for forming fiber reinforced polymer tapes are disclosed. A method may include, for example, traversing a polymer impregnated roving through a system comprising an inlet and an outlet, applying a consolidation pressure within the system to the polymer impregnated roving, and applying a smoothing pressure within the system to the polymer impregnated roving. The method may further include adjusting a temperature of the polymer impregnated roving with a heat transfer device between the inlet and the outlet, the heat transfer device having a temperature different from a temperature of the polymer impregnated roving at the inlet.
    Type: Application
    Filed: December 11, 2013
    Publication date: June 26, 2014
    Applicant: Ticona LLC
    Inventors: Cole Thomas Foor, David W. Eastep, Richard Frank Gregory, Timothy L. Tibor
  • Publication number: 20140106166
    Abstract: A composite rod for use in various applications, such as electrical cables (e.g., high voltage transmission cables), power umbilicals, tethers, ropes, and a wide variety of other structural members, is provided. The rod includes a core that is formed from a plurality of unidirectionally aligned fiber rovings embedded within a thermoplastic polymer matrix. The present inventors have discovered that the degree to which the rovings are impregnated with the thermoplastic polymer matrix can be significantly improved through selective control over the impregnation process, and also through control over the degree of compression imparted to the rovings during formation and shaping of the rod, as well as the calibration of the final rod geometry. Such a well impregnated rod has a very small void fraction, which leads to excellent strength properties. Notably, the desired strength properties may be achieved without the need for different fiber types in the rod.
    Type: Application
    Filed: April 11, 2012
    Publication date: April 17, 2014
    Applicant: Ticona LLC
    Inventors: Sherri M. Nelson, David W. Eastep, Timothy L. Tibor, Timothy A. Regan, Michael L. Wesley
  • Publication number: 20140102760
    Abstract: A composite core for use in electrical cables, such as high voltage transmission cables is provided. The composite core contains at least one rod that includes a continuous fiber component surrounded by a capping layer. The continuous fiber component is formed from a plurality of unidirectionally aligned fiber rovings embedded within a thermoplastic polymer matrix. The present inventors have discovered that the degree to which the rovings are impregnated with the thermoplastic polymer matrix can be significantly improved through selective control over the impregnation process, and also through control over the degree of compression imparted to the rovings during formation and shaping of the rod, as well as the calibration of the final rod geometry. Such a well impregnated rod has a very small void fraction, which leads to excellent strength properties. Notably, the desired strength properties may be achieved without the need for different fiber types in the rod.
    Type: Application
    Filed: April 11, 2012
    Publication date: April 17, 2014
    Applicant: Ticona LLC
    Inventors: Sherri M. Nelson, David W. Eastep, Timothy L. Tibor, Timothy A. Regan, Michael L. Wesley
  • Publication number: 20140037842
    Abstract: An impregnation section (150) and a method for impregnating fiber rovings (142) with a polymer resin (214) are disclosed. The impregnation section (150) includes an impregnation zone (250) and a gate passage (270). The impregnation zone (250) is configured to impregnate the plurality of rovings (142) with the resin (214). The gate passage (270) is in fluid communication with the impregnation zone (250) for flowing the resin therethrough such that the resin impinges on a surface (216) of each of the plurality of rovings (142) facing the gate passage (270) and substantially uniformly coats the plurality of rovings. The method includes impinging a polymer resin (214) onto a surface of a plurality of fiber rovings (142), and substantially uniformly coating the plurality of rovings with the resin. The method further includes traversing the plurality of coated rovings through an impregnation zone (250).
    Type: Application
    Filed: April 12, 2011
    Publication date: February 6, 2014
    Applicant: Ticona LLC
    Inventors: Timothy L. Tibor, Timothy A. Regan, Aaron H. Johnson, David W. Eastep
  • Publication number: 20140027944
    Abstract: A die and a method for impregnating fiber rovings (142) with a polymer resin (214) are disclosed. The die includes a manifold assembly (220), an impregnation zone, and a gate passage (270). The manifold assembly flows the resin (214) therethrough, and includes a plurality of branched runners (222). The impregnation zone is in fluid communication with the manifold assembly, and is configured to impregnate the roving with the resin. The gate passage (270) is between the manifold assembly and the impregnation zone (250), and flows the resin from the manifold assembly such that the resin coats the roving. The method includes flowing a polymer resin through a manifold assembly. The method further includes coating at least one fiber roving with the resin, and traversing the coated roving through an impregnation zone to impregnate the roving with the resin. The roving is under a tension of from about 5 Newtons to about Newtons within the impregnation zone.
    Type: Application
    Filed: April 12, 2011
    Publication date: January 30, 2014
    Applicant: Ticona LLC
    Inventors: Timothy L. Tibor, Timothy A. Regan, Aaron H. Johnson
  • Publication number: 20130136890
    Abstract: A prepreg that contains a plurality of unidirectionally aligned continuous fibers embedded within a thermoplastic polymer matrix is provided. In addition to continuous fibers, the prepreg also contains a plurality of long fibers that are combined with the continuous fibers so that they are randomly distributed within the thermoplastic matrix. As a result, at least a portion of the long fibers become oriented at an angle (e.g., perpendicular) relative to the direction of the continuous fibers. Through such orientation, the long fibers can substantially increase the mechanical properties of the prepreg in the transverse direction (e.g., strength) and thus achieve a more isotropic material. Although unique isotropic prepregs are one aspect of the present invention, it should be understood that this is not a requirement.
    Type: Application
    Filed: June 22, 2011
    Publication date: May 30, 2013
    Applicant: TICONA LLC
    Inventors: Jeremy J. Maliszewski, Aaron H. Johnson, Timothy L. Tibor