Patents by Inventor Timothy M. Fan

Timothy M. Fan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240124462
    Abstract: New synthetic methods to provide access to previously unexplored functionality at the C8 position of substituted imidazo[5,1-d][1,2,3,5]tetrazines of Formula I. Through synthesis and evaluation of a suite of compounds with a range of aqueous stabilities (from 0.5 to 40 hours), a predictive model for imidazotetrazine hydrolytic stability based on the Hammett constant of the C8 substituent was derived. Promising compounds were identified that possess activity against a panel of GBM cell lines, appropriate hydrolytic and metabolic stability, and brain-to-serum ratios dramatically elevated relative to TMZ, leading to lower hematological toxicity profiles and superior activity to TMZ in a mouse model of GBM.
    Type: Application
    Filed: December 16, 2022
    Publication date: April 18, 2024
    Applicant: The Board of Trustees of the University of Illinois
    Inventors: Paul J. HERGENROTHER, Timothy M. FAN, Riley L. SVEC
  • Publication number: 20240082241
    Abstract: Compositions and methods for the induction of cell death, for example, cancer cell death. Combinations of compounds and related methods of use are disclosed, including the use of compounds in therapy for the treatment of cancer and selective induction of apoptosis in cells. The disclosed drug combinations can have lower neurotoxicity effects than other cancer therapies that achieve the same or similar therapeutic effect.
    Type: Application
    Filed: November 21, 2023
    Publication date: March 14, 2024
    Applicants: THE BOARD OF TRUSTEES OF THE UNIVERSITY OF ILLINOIS, VANQUISH ONCOLOGY, INC., THE JOHNS HOPKINS UNIVERSITY
    Inventors: Paul J. HERGENROTHER, Rachel C. BOTHAM, Timothy M. FAN, Mark J. GILBERT, Michael K. HANDLEY, Avadhut JOSHI, Gregory J. RIGGINS, Theodore M. TARASOW
  • Patent number: 11926877
    Abstract: A saliva-based testing method that bypasses the need for RNA isolation/purification is described herein. In experiments with inactivated SARS-CoV-2 virus spiked into saliva, this method has a limit of detection of 500-1000 viral particles per mL, rivalling the standard NP swab method. Initial studies showed excellent performance with 100 clinical samples. This saliva-based process is operationally simple, utilizes readily available materials, and can be easily implemented by existing testing sites thus allowing for high-throughput, rapid, and repeat testing of large populations.
    Type: Grant
    Filed: June 17, 2021
    Date of Patent: March 12, 2024
    Assignee: The Board of Trustees of the University of Illinois
    Inventors: Diana Rose Ranoa, Robin L. Holland, Fadi G. Alnaji, Kelsie J. Green, Leyi Wang, Christopher B. Brooke, Martin D. Burke, Timothy M. Fan, Paul J. Hergenrother
  • Patent number: 11844798
    Abstract: The invention provides compositions and methods for the induction of cell death, for example, cancer cell death. Combinations of compounds and related methods of use are disclosed, including the use of compounds in therapy for the treatment of cancer and selective induction of apoptosis in cells. The disclosed drug combinations can have lower neurotoxicity effects than other compounds and combinations of compounds.
    Type: Grant
    Filed: December 22, 2020
    Date of Patent: December 19, 2023
    Assignees: The Board of Trustees of the University of Illinois, Vanquish Oncology, Inc., The Johns Hopkins University
    Inventors: Paul J. Hergenrother, Rachel C. Botham, Timothy M. Fan, Mark J. Gilbert, Michael K. Handley, Avadhut Joshi, Gregory J. Riggins, Theodore M. Tarasow
  • Patent number: 11833147
    Abstract: The invention provides compositions and methods for the induction of cell death, for example, cancer cell death. Combinations of compounds and related methods of use are disclosed, including the use of compounds in therapy for the treatment of cancer and selective induction of apoptosis in cells. The disclosed drug combinations can have lower neurotoxicity effects than other compounds and combinations of compounds.
    Type: Grant
    Filed: January 8, 2021
    Date of Patent: December 5, 2023
    Assignees: Vanquish Oncology, Inc., The Board of Trustees of the University of Illinois
    Inventors: Paul J. Hergenrother, Rachel C. Botham, Timothy M. Fan, Mark J. Gilbert, Michael K. Handley, Howard S. Roth, Theodore M. Tarasow
  • Publication number: 20230183252
    Abstract: New synthetic methods to provide access to previously unexplored functionality at the C8 position of substituted imidazo[5,1-d][1,2,3,5]tetrazines of Formula I. Through synthesis and evaluation of a suite of compounds with a range of aqueous stabilities (from 0.5 to 40 hours), a predictive model for imidazotetrazine hydrolytic stability based on the Hammett constant of the C8 substituent was derived. Promising compounds were identified that possess activity against a panel of GBM cell lines, appropriate hydrolytic and metabolic stability, and brain-to-serum ratios dramatically elevated relative to TMZ, leading to lower hematological toxicity profiles and superior activity to TMZ in a mouse model of GBM.
    Type: Application
    Filed: December 16, 2022
    Publication date: June 15, 2023
    Applicant: The Board of Trustees of the University of Illinois
    Inventors: Paul J. HERGENROTHER, Timothy M. FAN, Riley L. SVEC
  • Patent number: 11530457
    Abstract: A saliva-based testing method that bypasses the need for RNA isolation/purification is described herein. In experiments with inactivated SARS-CoV-2 virus spiked into saliva, this method has a limit of detection of 500-1000 viral particles per mL, rivalling the standard NP swab method. Initial studies showed excellent performance with 100 clinical samples. This saliva-based process is operationally simple, utilizes readily available materials, and can be easily implemented by existing testing sites thus allowing for high-throughput, rapid, and repeat testing of large populations.
    Type: Grant
    Filed: June 17, 2021
    Date of Patent: December 20, 2022
    Assignee: The Board of Trustees of the University of Illinois
    Inventors: Diana Rose Ranoa, Robin L. Holland, Fadi G. Alnaji, Kelsie J. Green, Leyi Wang, Christopher B. Brooke, Martin D. Burke, Timothy M. Fan, Paul J. Hergenrother
  • Publication number: 20220275464
    Abstract: A saliva-based testing method that bypasses the need for RNA isolation/purification is described herein. In experiments with inactivated SARS-CoV-2 virus spiked into saliva, this method has a limit of detection of 500-1000 viral particles per mL, rivalling the standard NP swab method. Initial studies showed excellent performance with 100 clinical samples. This saliva-based process is operationally simple, utilizes readily available materials, and can be easily implemented by existing testing sites thus allowing for high-throughput, rapid, and repeat testing of large populations.
    Type: Application
    Filed: June 17, 2021
    Publication date: September 1, 2022
    Applicant: The Board of Trustees of the University of Illinois
    Inventors: Diana Rose RANOA, Robin L. HOLLAND, Fadi G. ALNAJI, Kelsie J. GREEN, Leyi WANG, Christopher B. BROOKE, Martin D. BURKE, Timothy M. FAN, Paul J. HERGENROTHER
  • Publication number: 20220226311
    Abstract: The blood-brain barrier penetrant procaspase-3-activating drug, PAC-1, has been identified as an effective approach to inducing immune stimulatory destruction of cancer cells. PAC-1 induces cleavage of MLH1 in cancer cells, and studies show that inactivation of MLH1 leads to increased mutational burden and neoantigen presentation by major histocompatibility complex (MHC) products. Herein is described a mechanistic-based strategy to bring the power of immunotherapy in an effective fashion for treatment of cancer.
    Type: Application
    Filed: June 1, 2020
    Publication date: July 21, 2022
    Applicant: The Board of Trustees of the University of Illinois
    Inventors: Paul J. HERGENROTHER, Timothy M. FAN, Matthew BOUDREAU, William MONTGOMERY, Hyang-Yeon LEE, Marlies HAGER, Diana RANOA, Myung-ryul LEE
  • Publication number: 20210395839
    Abstract: A saliva-based testing method that bypasses the need for RNA isolation/purification is described herein. In experiments with inactivated SARS-CoV-2 virus spiked into saliva, this method has a limit of detection of 500-1000 viral particles per mL, rivalling the standard NP swab method. Initial studies showed excellent performance with 100 clinical samples. This saliva-based process is operationally simple, utilizes readily available materials, and can be easily implemented by existing testing sites thus allowing for high-throughput, rapid, and repeat testing of large populations.
    Type: Application
    Filed: June 17, 2021
    Publication date: December 23, 2021
    Applicant: The Board of Trustees of the University of Illinois
    Inventors: Diana Rose RANOA, Robin L. HOLLAND, Fadi G. ALNAJI, Kelsie J. GREEN, Leyi WANG, Christopher B. BROOKE, Martin D. BURKE, Timothy M. FAN, Paul J. HERGENROTHER
  • Publication number: 20210315886
    Abstract: New synthetic methods to provide access to previously unexplored functionality at the C8 position of imidazotetrazines. Through synthesis and evaluation of a suite of compounds with a range of aqueous stabilities (from 0.5 to 40 hours), a predictive model for imidazotetrazine hydrolytic stability based on the Hammett constant of the C8 substituent was derived. Promising compounds were identified that possess activity against a panel of GBM cell lines, appropriate hydrolytic and metabolic stability, and brain-to-serum ratios dramatically elevated relative to TMZ, leading to lower hematological toxicity profiles and superior activity to TMZ in a mouse model of GBM.
    Type: Application
    Filed: August 9, 2019
    Publication date: October 14, 2021
    Applicant: The Board of Trustees of the University of Illinois
    Inventors: Paul J. HERGENROTHER, Timothy M. FAN, Riley L. SVEC
  • Publication number: 20210290616
    Abstract: The invention provides compositions and methods for the induction of cell death, for example, cancer cell death. Combinations of compounds and related methods of use are disclosed, including the use of compounds in therapy for the treatment of cancer and selective induction of apoptosis in cells. The disclosed drug combinations can have lower neurotoxicity effects than other compounds and combinations of compounds.
    Type: Application
    Filed: December 22, 2020
    Publication date: September 23, 2021
    Applicants: The Board of Trustees of the University of Illinois, Vanquish Oncology, Inc., The Johns Hopkins University
    Inventors: Paul J. Hergenrother, Rachel C. BOTHAM, Timothy M. FAN, Mark J. GILBERT, Michael K. HANDLEY, Avadhut JOSHI, Gregory J. RIGGINS, Theodore M. TARASOW
  • Publication number: 20210128551
    Abstract: The invention provides compositions and methods for the induction of cell death, for example, cancer cell death. Combinations of compounds and related methods of use are disclosed, including the use of compounds in therapy for the treatment of cancer and selective induction of apoptosis in cells. The disclosed drug combinations can have lower neurotoxicity effects than other compounds and combinations of compounds.
    Type: Application
    Filed: January 8, 2021
    Publication date: May 6, 2021
    Applicants: The Board of Trustees of the University of Illinois, Vanquish Oncology, Inc.
    Inventors: Paul J. HERGENROTHER, Rachel C. BOTHAM, Timothy M. FAN, Mark J. GILBERT, Michael K. HANDLEY, Howard S. ROTH, Theodore M. TARASOW
  • Patent number: 10888560
    Abstract: The invention provides compositions and methods for the induction of cell death, for example, cancer cell death. Combinations of compounds and related methods of use are disclosed, including the use of compounds in therapy for the treatment of cancer and selective induction of apoptosis in cells. The disclosed drug combinations can have lower neurotoxicity effects than other compounds and combinations of compounds.
    Type: Grant
    Filed: October 1, 2018
    Date of Patent: January 12, 2021
    Assignees: The Board of Trustees of the University of Illinois, Vanquish Oncology, Inc.
    Inventors: Paul J. Hergenrother, Rachel C. Botham, Timothy M. Fan, Mark J. Gilbert, Michael K. Handley, Howard S. Roth, Theodore M. Tarasow
  • Publication number: 20210002286
    Abstract: New synthetic methods to provide access to previously unexplored functionality at the C8 position of imidazotetrazines. Through synthesis and evaluation of a suite of compounds with a range of aqueous stabilities (from 0.5 to 40 hours), a predictive model for imidazotetrazine hydrolytic stability based on the Hammett constant of the C8 substituent was derived. Promising compounds were identified that possess activity against a panel of GBM cell lines, appropriate hydrolytic and metabolic stability, and brain-to-serum ratios dramatically elevated relative to TMZ, leading to lower hematological toxicity profiles and superior activity to TMZ in a mouse model of GBM.
    Type: Application
    Filed: September 10, 2020
    Publication date: January 7, 2021
    Applicant: The Board of Trustees of the University of Illinois
    Inventors: Paul J. HERGENROTHER, Timothy M. Fan, Riley L. Svec
  • Patent number: 10874666
    Abstract: The invention provides compositions and methods for the induction of cell death, for example, cancer cell death. Combinations of compounds and related methods of use are disclosed, including the use of compounds in therapy for the treatment of cancer and selective induction of apoptosis in cells. The disclosed drug combinations can have lower neurotoxicity effects than other compounds and combinations of compounds.
    Type: Grant
    Filed: October 1, 2018
    Date of Patent: December 29, 2020
    Assignees: The Board of Trustees of the University of Illinois, Vanquish Oncology, Inc., The Johns Hopkins University
    Inventors: Paul J. Hergenrother, Rachel C. Botham, Timothy M. Fan, Mark J. Gilbert, Michael K. Handley, Avadhut Joshi, Gregory J. Riggins, Theodore M. Tarasow
  • Publication number: 20190099418
    Abstract: The invention provides compositions and methods for the induction of cell death, for example, cancer cell death. Combinations of compounds and related methods of use are disclosed, including the use of compounds in therapy for the treatment of cancer and selective induction of apoptosis in cells. The disclosed drug combinations can have lower neurotoxicity effects than other compounds and combinations of compounds.
    Type: Application
    Filed: October 1, 2018
    Publication date: April 4, 2019
    Applicants: The Board of Trustees of the University of Illinois, Vanquish Oncology, Inc.
    Inventors: Paul J. HERGENROTHER, Rachel C. BOTHAM, Timothy M. FAN, Mark J. GILBERT, Michael K. HANDLEY, Howard S. ROTH, Theodore M. TARASOW
  • Publication number: 20190099419
    Abstract: The invention provides compositions and methods for the induction of cell death, for example, cancer cell death. Combinations of compounds and related methods of use are disclosed, including the use of compounds in therapy for the treatment of cancer and selective induction of apoptosis in cells. The disclosed drug combinations can have lower neurotoxicity effects than other compounds and combinations of compounds.
    Type: Application
    Filed: October 1, 2018
    Publication date: April 4, 2019
    Applicants: The Board of Trustees of the University of Illinois, Vanquish Oncology, Inc., The Johns Hopkins University
    Inventors: Paul J. HERGENROTHER, Rachel C. BOTHAM, Timothy M. FAN, Mark J. GILBERT, Michael K. HANDLEY, Avadhut JOSHI, Gregory J. RIGGINS, Theodore M. TARASOW
  • Patent number: 10085977
    Abstract: The invention provides compositions and methods for the induction of cell death, for example, cancer cell death. Combinations of compounds and related methods of use are disclosed, including the use of compounds in therapy for the treatment of cancer and selective induction of apoptosis in cells. The disclosed drug combinations can have lower neurotoxicity effects than other compounds and combinations of compounds.
    Type: Grant
    Filed: July 26, 2016
    Date of Patent: October 2, 2018
    Assignees: The Board of Trustees of the Univerity of Illinois, Vanquish Oncology, Inc.
    Inventors: Paul J. Hergenrother, Rachel C. Botham, Timothy M. Fan, Mark J. Gilbert, Michael K. Handley, Howard S. Roth, Theodore M. Tarasow
  • Patent number: 10085978
    Abstract: The invention provides compositions and methods for the induction of cell death, for example, cancer cell death. Combinations of compounds and related methods of use are disclosed, including the use of compounds in therapy for the treatment of cancer and selective induction of apoptosis in cells. The disclosed drug combinations can have lower neurotoxicity effects than other compounds and combinations of compounds.
    Type: Grant
    Filed: August 22, 2016
    Date of Patent: October 2, 2018
    Assignees: The Board of Trustees of the University of Illinois, Vanquish Oncology, Inc., The Johns Hopkins University
    Inventors: Paul J. Hergenrother, Rachel C. Botham, Timothy M. Fan, Mark J. Gilbert, Michael K. Handley, Avadhut Joshi, Gregory J. Riggins, Theodore M. Tarasow