Patents by Inventor Timothy M. Healy

Timothy M. Healy has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11922800
    Abstract: A test system includes a testing base including a plurality of testing base containers, and a plurality of electrodes integrated into the plurality of testing base containers. The test system further includes a plurality of drive-sense circuits coupled to the plurality of electrodes, where, when enabled, the plurality of drive-sense circuits detect changes in electrical characteristics of the plurality of electrodes. The test system further includes a processing module operably coupled to receive, from the drive-sense circuits, changes in the electrical characteristics of the plurality of electrodes, and interpret the changes in the electrical characteristics of the plurality of electrodes as impedance values representative of electrical characteristics of biological material present in the test container. The test system further includes a communication module operably coupled to communicate the electrical characteristics of the biological material.
    Type: Grant
    Filed: April 29, 2021
    Date of Patent: March 5, 2024
    Assignee: SIGMASENSE, LLC.
    Inventors: Daniel Keith Van Ostrand, Richard Stuart Seger, Jr., Gerald Dale Morrison, Patrick Troy Gray, Phuong Huynh, Timothy W. Markison, Patricia M. Healy
  • Patent number: 11742508
    Abstract: A reforming element for a molten carbonate fuel cell stack and corresponding methods are provided that can reduce or minimize temperature differences within the fuel cell stack when operating the fuel cell stack with enhanced CO2 utilization. The reforming element can include at least one surface with a reforming catalyst deposited on the surface. A difference between the minimum and maximum reforming catalyst density and/or activity on a first portion of the at least one surface can be 20% to 75%, with the highest catalyst densities and/or activities being in proximity to the side of the fuel cell stack corresponding to at least one of the anode inlet and the cathode inlet.
    Type: Grant
    Filed: November 26, 2019
    Date of Patent: August 29, 2023
    Assignees: EXXONMOBIL TECHNOLOGY AND ENGINEERING COMPANY, FUELCELL ENERGY, INC.
    Inventors: Everett J. O'Neal, Lu Han, Carla S. Pereira, Rodrigo F. Blanco Gutierrez, Timothy M. Healy, Carl A. Willman, Hossein Ghezel-Ayagh, Frank J. Dobek, Jr.
  • Publication number: 20230197994
    Abstract: A reforming element for a molten carbonate fuel cell stack and corresponding methods are provided that can reduce or minimize temperature differences within the fuel cell stack when operating the fuel cell stack with enhanced CO2 utilization. The reforming element can include at least one surface with a reforming catalyst deposited on the surface. A difference between the minimum and maximum reforming catalyst density and/or activity on a first portion of the at least one surface can be 20% to 75%, with the highest catalyst densities and/or activities being in proximity to the side of the fuel cell stack corresponding to at least one of the anode inlet and the cathode inlet.
    Type: Application
    Filed: February 15, 2023
    Publication date: June 22, 2023
    Inventors: Everett J. O'Neal, Lu Han, Carla S. Pereira, Rodrigo F. Blanco Gutierrez, Timothy M. Healy, Carl A. Willman, Hossein Ghezel-Ayagh, Frank J. Dobek, JR.
  • Publication number: 20200176800
    Abstract: A reforming element for a molten carbonate fuel cell stack and corresponding methods are provided that can reduce or minimize temperature differences within the fuel cell stack when operating the fuel cell stack with enhanced CO2 utilization. The reforming element can include at least one surface with a reforming catalyst deposited on the surface. A difference between the minimum and maximum reforming catalyst density and/or activity on a first portion of the at least one surface can be 20% to 75%, with the highest catalyst densities and/or activities being in proximity to the side of the fuel cell stack corresponding to at least one of the anode inlet and the cathode inlet.
    Type: Application
    Filed: November 26, 2019
    Publication date: June 4, 2020
    Inventors: Everett J. O'Neal, Lu Han, Carla S. Pereira, Rodrigo F. Blanco Gutierrez, Timothy M. Healy, Carl A. Willman, Hossein Ghezel-Ayagh, Frank J. Dobek, JR.
  • Patent number: 9785326
    Abstract: The disclosure includes methods and systems for defining and generating graphics for one or more interactive elements to be used in an interactive user interface. Some embodiments include inputting into a graphical user interface a full screen graphic that includes an image illustrating a graphic in a first state. Embodiments may also include selecting an area of the image and defining the area as an interactive element. Additionally, some embodiments may include automatically linking tracking data to the interactive element for analytics and reporting.
    Type: Grant
    Filed: August 30, 2016
    Date of Patent: October 10, 2017
    Assignee: Proscape Technologies, Inc.
    Inventors: Timothy M. Healy, Derek H. Pollock, Sanjeev J. Surati, Michael A. McCloskey
  • Patent number: 9670417
    Abstract: A fluid coking unit for converting a heavy oil feed to lower boiling products by thermal has a centrally-apertured annular baffle at the top of the stripping zone below the coking zone to inhibit recirculation of solid particles from the stripping zone to the coking zone. By inhibiting recirculation of the particles from the stripping zone to the coking zone, the temperatures of the two zones are effectively decoupled, enabling the coking zone to be run at a lower temperature than the stripping zone to increase the yield of liquid products.
    Type: Grant
    Filed: February 20, 2014
    Date of Patent: June 6, 2017
    Assignee: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Bing Du, Timothy M. Healy, Fritz A. Bernatz, Yi En Huang, Zachary R. Martin, Brenda A. Raich
  • Publication number: 20170075546
    Abstract: The disclosure includes methods and systems for defining and generating graphics for one or more interactive elements to be used in an interactive user interface. Some embodiments include inputting into a graphical user interface a full screen graphic that includes an image illustrating a graphic in a first state. Embodiments may also include selecting an area of the image and defining the area as an interactive element. Additionally, some embodiments may include automatically linking tracking data to the interactive element for analytics and reporting.
    Type: Application
    Filed: August 30, 2016
    Publication date: March 16, 2017
    Inventors: Timothy M. Healy, Derek H. Pollock, Sanjeev J. Surati, Michael A. McCloskey
  • Patent number: 9322549
    Abstract: The invention relates mixer/flow distributors and their use, e.g., in regenerative reactors. The invention encompasses a process and apparatus for controlling oxidation, e.g., for thermally regenerating a reactor, such as a regenerative, reverse-flow reactor.
    Type: Grant
    Filed: December 5, 2012
    Date of Patent: April 26, 2016
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Frank Hershkowitz, Jeffrey W. Frederick, Timothy M. Healy, Ying Liu
  • Publication number: 20140251783
    Abstract: A fluid coking unit for converting a heavy oil feed to lower boiling products by thermal has a centrally-apertured annular baffle at the top of the stripping zone below the coking zone to inhibit recirculation of solid particles from the stripping zone to the coking zone. By inhibiting recirculation of the particles from the stripping zone to the coking zone, the temperatures of the two zones are effectively decoupled, enabling the coking zone to be run at a lower temperature than the stripping zone to increase the yield of liquid products.
    Type: Application
    Filed: February 20, 2014
    Publication date: September 11, 2014
    Applicant: ExxonMobil Research and Engineering Company
    Inventors: Bing Du, Timothy M. Healy, Fritz A. Bernatz, Yi En Huang, Zachary R. Martin, Brenda A. Raich
  • Publication number: 20130157205
    Abstract: The invention relates mixer/flow distributors and their use, e.g., in regenerative reactors. The invention encompasses a process and apparatus for controlling oxidation, e.g., for thermally regenerating a reactor, such as a regenerative, reverse-flow reactor.
    Type: Application
    Filed: December 5, 2012
    Publication date: June 20, 2013
    Applicant: ExxonMobil Chemical Patents Inc.. - Law Technology
    Inventors: Frank HERSHKOWITZ, Jeffrey W. FREDERICK, Timothy M. HEALY, Ying LIU
  • Patent number: 8435452
    Abstract: A circulating fluid bed reactor such as that used in fluid coking processes has a circular dense bed reaction section above the reactor base where the fluidizing gas is injected and a plurality of frusto-conical baffles in the dense bed reaction section, each of which depends downwardly and radially inwards from the reactor wall to a lower, inner edge defining a central aperture. The baffles are preferably provided with downcomers which permit downward flow of solids and upward flow of gas through the baffles.
    Type: Grant
    Filed: February 17, 2011
    Date of Patent: May 7, 2013
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: John T. Wyatt, Jr., E. Nicholas Jones, Alvin U. Chen, Clay R. Sutton, Timothy M. Healy, Ronald Suryo, Len Lampert, Jonathan Miller
  • Publication number: 20110206563
    Abstract: A circulating fluid bed reactor such as that used in fluid coking processes has a circular dense bed reaction section above the reactor base where the fluidizing gas is injected and a plurality of frusto-conical baffles in the dense bed reaction section, each of which depends downwardly and radially inwards from the reactor wall to a lower, inner edge defining a central aperture. The baffles are preferably provided with downcomers which permit downward flow of solids and upward flow of gas through the baffles.
    Type: Application
    Filed: February 17, 2011
    Publication date: August 25, 2011
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: John T. WYATT, JR., E. Nicholas JONES, Alvin U. CHEN, Clay R. SUTTON, Timothy M. HEALY, Ronald SURYO, Len LAMPERT, Jonathan MILLER
  • Patent number: 7906697
    Abstract: This invention relates to efficiently regenerating catalyst particles by minimizing the formation of localized “hot spots” and “cold spots” in a regeneration zone. Specifically this invention relates to a method for controlling regenerator temperature in an oxygenates-to-olefins system, comprising the steps of: contacting an oxygenate feed in a reactor with a catalytically effective amount of molecular sieve-containing catalyst under conditions effective for converting said oxygenate to a product containing light olefins and forming a coked catalyst; contacting a portion of the coked catalyst in a regenerator, having a catalyst bed height (Hc), an inlet height (Hi), and an outlet height (Ho), with an oxygen-containing regeneration medium under conditions effective to at least partially regenerate the coked catalyst; and conducting a portion of the catalyst from the regenerator to a catalyst cooler to form a cooled catalyst portion, wherein Ho is greater than Hi.
    Type: Grant
    Filed: March 31, 2008
    Date of Patent: March 15, 2011
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: James H. Beech, Jr., Chunshe Cao, Michael P. Nicoletti, James R. Lattner, Jesse F. Goellner, Rutton D. Patel, Timothy M. Healy
  • Patent number: 7736470
    Abstract: Described herein are methods and mechanisms for laterally dispensing fluid to a coke drum in a predictable and maintainable manner that alleviates thermal stress. In one embodiment, the methods and mechanisms utilize a split piping system to dispense fluid through two or more inlets into a spool that is connected to a coke drum and a coke drum bottom deheader valve. A combination of block valves and clean out ports provides a more effective means to clean the lines and allows fluid to be laterally dispensed in a controllable and predictable manner. The fluid is preferably introduced to the spool in opposing directions toward a central vertical axis of the spool at equal but opposing angles ranging from minus thirty (?30) to thirty (30) degrees relative to a horizontal line laterally bisecting the spool. Alternatively, however, fluid can be introduced to the spool tangentially.
    Type: Grant
    Filed: March 12, 2007
    Date of Patent: June 15, 2010
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Te-Hung Chen, Christopher P. Eppig, Timothy M. Healy, Scott F. Massenzio, Robert W. Mosley, Rutton D. Patel
  • Publication number: 20090192341
    Abstract: This invention relates to efficiently regenerating catalyst particles by minimizing the formation of localized “hot spots” and “cold spots” in a regeneration zone. Specifically this invention relates to a method for controlling regenerator temperature in an oxygenates-to-olefins system, comprising the steps of: contacting an oxygenate feed in a reactor with a catalytically effective amount of molecular sieve-containing catalyst under conditions effective for converting said oxygenate to a product containing light olefins and forming a coked catalyst; contacting a portion of the coked catalyst in a regenerator, having a catalyst bed height (Hc), an inlet height (Hi), and an outlet height (Ho), with an oxygen-containing regeneration medium under conditions effective to at least partially regenerate the coked catalyst; and conducting a portion of the catalyst from the regenerator to a catalyst cooler to form a cooled catalyst portion, wherein Ho is greater than Hi.
    Type: Application
    Filed: March 31, 2008
    Publication date: July 30, 2009
    Inventors: James H. Beech, JR., Chunshe Cao, Michael P. Nicoletti, James R. Lattner, Jesse F. Goellner, Rutton D. Patel, Timothy M. Healy
  • Publication number: 20080179165
    Abstract: Described herein are methods and mechanisms for laterally dispensing fluid to a coke drum in a predictable and maintainable manner that alleviates thermal stress. In one embodiment, the methods and mechanisms utilize a split piping system to dispense fluid through two or more inlets into a spool that is connected to a coke drum and a coke drum bottom deheader valve. A combination of block valves and clean out ports provides a more effective means to clean the lines and allows fluid to be laterally dispensed in a controllable and predictable manner. The fluid is preferably introduced to the spool in opposing directions toward a central vertical axis of the spool at equal but opposing angles ranging from minus thirty (?30) to thirty (30) degrees relative to a horizontal line laterally bisecting the spool. Alternatively, however, fluid can be introduced to the spool tangentially.
    Type: Application
    Filed: March 12, 2007
    Publication date: July 31, 2008
    Applicant: ExxonMobil Research and Engineering Company
    Inventors: Te-Hung Chen, Christopher P. Eppig, Timothy M. Healy, Scott F. Massenzio, Robert W. Mosley, Rutton D. Patel