Patents by Inventor Timothy M. Swager

Timothy M. Swager has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7208122
    Abstract: The present invention relates to a class of luminescent and conductive polymer compositions having chromophores, and particularly solid films of these compositions exhibiting increased luminescent lifetimes, quantum yields and amplified emissions. These desirable properties can be provided through polymers having rigid groups designed to prevent polymer reorganization, aggregation or ?-stacking upon solidification. These polymers can also display an unusually high stability with respect to solvent and heat exposures. The invention also relates to a sensor and a method for sensing an analyte through the luminescent and conductive properties of these polymers. Analytes can be sensed by activation of a chromophore at a polymer surface. Analytes include aromatics, phosphate ester groups and in particular explosives and chemical warfare agents in a gaseous state.
    Type: Grant
    Filed: December 18, 2002
    Date of Patent: April 24, 2007
    Assignee: Massachusetts Institute of Technology
    Inventors: Timothy M. Swager, Jye-Shane Yang, Vance Williams, Yi-Jun Miao, Claus G. Lugmair, Igor A. Levitsky, Jinsang Kim, Robert Deans
  • Patent number: 7186355
    Abstract: The present invention relates to compositions which provide an insulated nanoscopic pathway. The pathway comprises molecules, polymers or nanoscopic particles capable of conducting charge integrated with nanoscopic switches which are capable of electronic communication with the charge-conducting species. Turning “on” the nanoscopic switch electronically “connects” the various molecules/particles, such that a continuous nanoscopic pathway results. The nanoscopic pathway can be used in a sensor, where the switches can act as receptors for analytes. Binding of an analyte can result in a variety of effects on the nanoscopic pathway, including altering the conductivity of the nanoscopic pathway.
    Type: Grant
    Filed: February 5, 2001
    Date of Patent: March 6, 2007
    Assignee: Massachusetts Institute of Technology
    Inventor: Timothy M. Swager
  • Patent number: 7138075
    Abstract: The synthesis of thiophene based conducting polymer molecular actuators, exhibiting electrically triggered molecular conformational transitions is reported. Actuation is believed to be the result of conformational rearrangement of the polymer backbone at the molecular level, not simply ion intercalation in the bulk polymer chain upon electrochemical activation. Molecular actuation results from ?—? stacking of thiophene oligomers upon oxidation, producing a reversible molecular displacement that leads to surprising material properties, such as electrically controllable porosity and large strains. The existence of active molecular conformational changes is supported by in situ electrochemical data. Single molecule techniques have been used to characterize the molecular actuators.
    Type: Grant
    Filed: March 19, 2003
    Date of Patent: November 21, 2006
    Assignee: Massachusetts Institute of Technology
    Inventors: Patrick A. Anquetil, Ian W. Hunter, John D. Madden, Peter G. Madden, Anthony E. Pullen, Timothy M. Swager, Bing Xu, Hsiao-hua Yu
  • Patent number: 7041910
    Abstract: The present invention generally relates to stable emissive aggregates of polymers. The aggregates are composed of various polymer molecules arranged in such a way as to allow extended electronic couplings between nearby polymer molecules, enhancing exciton transport, while minimizing the effects of quenching due to interchain interactions. For example, the polymer molecules may be arranged in a non-aligned, electronically-communicative manner (for example, at an oblique angle), stabilized by various methods such as chemical linkages or physical interactions. Within the aggregate, electronic interactions along the polymer molecule may extend to nearby polymer molecules, which may be observed as a shift in the absorption spectra relative to a random dispersion. Light emitted from the aggregate may be polarized in some cases, for example, linearly or circularly, which may be caused by chiral arrangements of polymers within the aggregate (the polymers themselves may or may not be chiral).
    Type: Grant
    Filed: July 15, 2003
    Date of Patent: May 9, 2006
    Assignee: Massachusetts Institute of Technology
    Inventors: Timothy M. Swager, Steffen Zahn
  • Patent number: 7038085
    Abstract: The present invention relates generally to the enantiomers of para-hydroxy-milnacipran or congeners thereof. Biological assays revealed that racemic para-hydroxy-milnacipran is approximately equipotent in inhibiting serotonin and norepinephrine uptake (IC50=28.6 nM for norepinephrine, IC50=21.7 nM for serotonin). Interestingly, (+)-para-hydroxy-milnacipran is a more potent inhibitor of norepinephrine uptake than serotonin uptake (IC50=10.3 nM for norepinephrine, IC50=22 nM for serotonin). In contrast, (?)-para-hydroxy-milnacipran is a more potent inhibitor of serotonin uptake compared to norepinephrin uptake (IC50=88.5 nM for norepinephrine, IC50=40.3 nM for serotonin). The invention also relates to salts and prodrug forms of the aforementioned compounds. In certain embodiments, the compounds of the present invention and a pharmaceutically acceptable excipient are combined to prepare a formulation for administration to a patient.
    Type: Grant
    Filed: October 22, 2003
    Date of Patent: May 2, 2006
    Assignee: Collegium Pharmaceutical, Inc.
    Inventors: Roman V. Rariy, Michael Heffernan, Stephen L. Buchwald, Timothy M. Swager
  • Patent number: 6962757
    Abstract: In general terms, the present invention includes a light emitting polymeric material the light emitting polymeric material capable of producing electroluminescence upon being provided with a flow of electrons, the light emitting polymeric material comprising a plurality of polymeric chains comprising polymeric chains each having substituent moieties of sufficient number and size and extending from the polymeric chain and about a substantial portion of the circumference about the polymer chain so as to maintain the polymeric chains in a sufficiently deaggregated state (referred to herein as a “strapped” polymer), so as to substantially prevent the redshifting of the electroluminescence and the lowering of light emission efficiency of the electroluminescence.
    Type: Grant
    Filed: August 27, 2003
    Date of Patent: November 8, 2005
    Assignee: The Ohio State Universtiy Research Foundation
    Inventors: Arthur J. Epstein, Yunzhang Wang, Darren D. Gebler, Timothy M. Swager
  • Publication number: 20040235184
    Abstract: One aspect of the present invention relates to a method for detecting the presence of an analyte by comparing the conductivity of a mixture containing an analyte and a sensor to the conductivity of the sensor in the absence of analyte. In certain embodiments, the sensor of the present invention consists of a complexing domain comprising a metal ion and a complexing agent and a conducting polymer, wherein the redox potential of the metal ion is similar to the redox potential of the conducting polymer. In one preferred embodiment, the presence of nitric oxide is detected by measuring the conducting change of a sensor comprising poly N,N′-ethylenebis(salicylidenimine) and cobalt. The poly N,N′-ethylenebis(salicylidenimine) cobalt sensors of the present invention are not adversely effected by the presence of water or oxygen.
    Type: Application
    Filed: May 21, 2003
    Publication date: November 25, 2004
    Inventor: Timothy M. Swager
  • Publication number: 20040170775
    Abstract: Shape-persistent organic materials, including polymers, with large degrees of interior free volume are described, along with behaviors and phenomena enabled by their unique properties. One class of such a material is built up from triptycene base moieties wherein three benzene rings are bridged together about a [2.2.2] tricyclic ring system. These units can be assembled into discreet molecules and polymers. These materials and/or formulations thereof with liquid crystals or polymers are useful for the complexation of chemicals and/or polymers; they have very low dielectric constants for use as coatings in dielectric circuits, they provide additional ordering mechanisms in liquid crystals, and they display unusual mechanical responses when subjected to electrochemical, chemical, or mechanical stimuli.
    Type: Application
    Filed: January 26, 2004
    Publication date: September 2, 2004
    Inventors: Timothy M. Swager, Timothy M. Long, Zhengguo Zhu
  • Patent number: 6783814
    Abstract: Shape-persistent organic materials, including polymers, with large degrees of interior free volume are described, along with behaviors and phenomena enabled by their unique properties. One class of such a material is built up from triptycene base moieties wherein three benzene rings are bridged together about a [2.2.2] tricyclic ring system. These units can be assembled into discreet molecules and polymers. These materials and/or formulations thereof with liquid crystals or polymers are useful for the complexation of chemicals and/or polymers; they have very low dielectric constants for use as coatings in dielectric circuits, they provide additional ordering mechanisms in liquid crystals, and they display unusual mechanical responses when subjected to electrochemical, chemical, or mechanical stimuli.
    Type: Grant
    Filed: August 21, 2001
    Date of Patent: August 31, 2004
    Assignee: Massachusetts Institute of Technology
    Inventors: Timothy M. Swager, Timothy M. Long, Zhengguo Zhu
  • Publication number: 20040142904
    Abstract: The present invention relates generally to the enantiomers of para-hydroxy-milnacipran or congeners thereof. Biological assays revealed that racemic para-hydroxy-milnacipran is approximately equipotent in inhibiting serotonin and norepinephrine uptake (IC50=28.6 nM for norepinephrine, IC50=21.7 nM for serotonin). Interestingly, (+)-para-hydroxy-milnacipran is a more potent inhibitor of norepinephrine uptake than serotonin uptake (IC50=10.3 nM for norepinephrine, IC50=22 nM for serotonin). In contrast, (−)-para-hydroxy-milnacipran is a more potent inhibitor of serotonin uptake compared to norepinephrin uptake (IC50=88.5 nM for norepinephrine, IC50=40.3 nM for serotonin). The invention also relates to salts and prodrug forms of the aforementioned compounds. In certain embodiments, the compounds of the present invention and a pharmaceutically acceptable excipient are combined to prepare a formulation for administration to a patient.
    Type: Application
    Filed: October 22, 2003
    Publication date: July 22, 2004
    Inventors: Roman V. Rariy, Michael Heffernan, Stephen L. Buchwald, Timothy M. Swager
  • Publication number: 20040116650
    Abstract: The present invention generally relates to stable emissive aggregates of polymers. The aggregates are composed of various polymer molecules arranged in such a way as to allow extended electronic couplings between nearby polymer molecules, enhancing exciton transport, while minimizing the effects of quenching due to interchain interactions. For example, the polymer molecules may be arranged in a non-aligned, electronically-communicative manner (for example, at an oblique angle), stabilized by various methods such as chemical linkages or physical interactions. Within the aggregate, electronic interactions along the polymer molecule may extend to nearby polymer molecules, which may be observed as a shift in the absorption spectra relative to a random dispersion. Light emitted from the aggregate may be polarized in some cases, for example, linearly or circularly, which may be caused by chiral arrangements of polymers within the aggregate (the polymers themselves may or may not be chiral).
    Type: Application
    Filed: July 15, 2003
    Publication date: June 17, 2004
    Inventors: Timothy M. Swager, Steffen Zahn
  • Publication number: 20040058946
    Abstract: One aspect of the present invention relates to compositions and methods for discouraging improper use of habit-forming and addictive drugs, such as oxycodone. In a preferred embodiment, a habit-forming or addictive drug is chemically modified to block its physiological activity until the drug is transformed to a physiologically active form in the mammalian gastrointestinal tract.
    Type: Application
    Filed: July 3, 2003
    Publication date: March 25, 2004
    Inventors: Stephen L. Buchwald, Timothy M. Swager, Roman V. Rariy
  • Publication number: 20040052731
    Abstract: An abuse-deterrent pharmaceutical composition has been developed to reduce the likelihood of improper administration of drugs, especially drugs such as opiods. In the preferred embodiment, a drug is modified to increase its lipophilicity. In preferred embodiments the modified drug is homogeneously dispersed within microparticles composed of a material that is either slowly soluble or not soluble in water. In some embodiments the drug containing microparticles or drug particles are coated with one or more coating layers, where at least one coating is water insoluble and preferably organic solvent insoluble, but enzymatically degradable by enzymes present in the human gastrointestinal tract. The abuse-deterrent composition retards the release of drug, even if the physical integrity of the formulation is compromised (for example, by chopping with a blade or crushing) and the resulting material is placed in water, snorted, or swallowed.
    Type: Application
    Filed: July 7, 2003
    Publication date: March 18, 2004
    Applicant: Collegium Pharmaceuticals, Inc.
    Inventors: Jane Hirsh, Alexander M. Klibanov, Timothy M. Swager, Stephen L. Buchwald, Whe Yong Lo, Alison Fleming, Roman V. Rariy
  • Publication number: 20040043251
    Abstract: In general terms, the present invention includes a light emitting polymeric material the light emitting polymeric material capable of producing electroluminescence upon being provided with a flow of electrons, the light emitting polymeric material comprising a plurality of polymeric chains comprising polymeric chains each having substituent moieties of sufficient number and size and extending from the polymeric chain and about a substantial portion of the circumference about the polymer chain so as to maintain the polymeric chains in a sufficiently deaggregated state (referred to herein as a “strapped” polymer), so as to substantially prevent the redshifting of the electroluminescence and the lowering of light emission efficiency of the electroluminescence.
    Type: Application
    Filed: August 27, 2003
    Publication date: March 4, 2004
    Inventors: Arthur J. Epstein, Yunzhang Wang, Darren D. Gebler, Timothy M. Swager
  • Publication number: 20040007695
    Abstract: The synthesis of thiophene based conducting polymer molecular actuators, exhibiting electrically triggered molecular conformational transitions is reported. Actuation is believed to be the result of conformational rearrangement of the polymer backbone at the molecular level, not simply ion intercalation in the bulk polymer chain upon electrochemical activation. Molecular actuation results from &pgr;-&pgr; stacking of thiophene oligomers upon oxidation, producing a reversible molecular displacement that leads to surprising material properties, such as electrically controllable porosity and large strains. The existence of active molecular conformational changes is supported by in situ electrochemical data. Single molecule techniques have been used to characterize the molecular actuators.
    Type: Application
    Filed: March 19, 2003
    Publication date: January 15, 2004
    Inventors: Patrick A. Anquetil, Ian W. Hunter, John D. Madden, Peter G. Madden, Anthony E. Pullen, Timothy M. Swager, Bing Xu, Hsiao-hua Yu
  • Publication number: 20030178607
    Abstract: The present invention relates to a class of luminescent and conductive polymer compositions having chromophores, and particularly solid films of these compositions exhibiting increased luminescent lifetimes, quantum yields and amplified emissions. These desirable properties can be provided through polymers having rigid groups designed to prevent polymer reorganization, aggregation or &pgr;-stacking upon solidification. These polymers can also display an unusually high stability with respect to solvent and heat exposures. The invention also relates to a sensor and a method for sensing an analyte through the luminescent and conductive properties of these polymers. Analytes can be sensed by activation of a chromophore at a polymer surface. Analytes include aromatics, phosphate ester groups and in particular explosives and chemical warfare agents in a gaseous state.
    Type: Application
    Filed: December 18, 2002
    Publication date: September 25, 2003
    Applicant: Massachusetts Institute of Technology
    Inventors: Timothy M. Swager, Jye-Shane Yang, Vance Williams, Yi-Jun Miao, Claus G. Lugmair, Igor A. Levitsky, Jinsang Kim, Robert Deans
  • Patent number: 6623870
    Abstract: In general terms, the present invention includes a light emitting polymeric material the light emitting polymeric material capable of producing electroluminescence upon being provided with a flow of electrons, the light emitting polymeric material comprising a plurality of polymeric chains comprising polymeric chains each having substituent moieties of sufficient number and size and extending from the polymeric chain and about a substantial portion of the circumference about the polymer chain so as to maintain the polymeric chains in a sufficiently deaggregated state (referred to herein as a “strapped” polymer), so as to substantially prevent the redshifting of the electroluminescence and the lowering of light emission efficiency of the electroluminescence.
    Type: Grant
    Filed: July 29, 1997
    Date of Patent: September 23, 2003
    Assignee: The Ohio State University
    Inventors: Arthur J. Epstein, Yunzhang Wang, Darren D. Gebler, Timothy M. Swager
  • Publication number: 20020150697
    Abstract: Shape-persistent organic materials, including polymers, with large degrees of interior free volume are described, along with behaviors and phenomena enabled by their unique properties. One class of such a material is built up from triptycene base moieties wherein three benzene rings are bridged together about a [2.2.2] tricyclic ring system. These units can be assembled into discreet molecules and polymers. These materials and/or formulations thereof with liquid crystals or polymers are useful for the complexation of chemicals and/or polymers; they have very low dielectric constants for use as coatings in dielectric circuits, they provide additional ordering mechanisms in liquid crystals, and they display unusual mechanical responses when subjected to electrochemical, chemical, or mechanical stimuli.
    Type: Application
    Filed: August 21, 2001
    Publication date: October 17, 2002
    Inventors: Timothy M. Swager, Timothy M. Long, Zhengguo Zhu
  • Publication number: 20020040805
    Abstract: The present invention relates to compositions which provide an insulated nanoscopic pathway. The pathway comprises molecules, polymers or nanoscopic particles capable of conducting charge integrated with nanoscopic switches which are capable of electronic communication with the charge-conducting species. Turning “on” the nanoscopic switch electronically “connects” the various molecules/particles, such that a continuous nanoscopic pathway results. The nanoscopic pathway can be used in a sensor, where the switches can act as receptors for analytes. Binding of an analyte can result in a variety of effects on the nanoscopic pathway, including altering the conductivity of the nanoscopic pathway.
    Type: Application
    Filed: February 5, 2001
    Publication date: April 11, 2002
    Inventor: Timothy M. Swager
  • Patent number: 6323309
    Abstract: Conductive properties are optimized in conducting polymers, made up of organic units and metal ions, by tailoring the position of metal ions with respect to conductive pathways or by selecting components such that the redox potential of organic units and metal ions differs by no more than 250 mV. Very small devices, and articles in which a high percentage of metal ions are redox active, are provided. Articles that can serve as sensors include metal ions with at least one free reactive site that can accommodate an analyte for conductivity change detection. Chemoresistive devices, field effect transistors, and signal amplifiers are provided.
    Type: Grant
    Filed: December 1, 1998
    Date of Patent: November 27, 2001
    Assignee: Massachusetts Institute of Technology
    Inventors: Timothy M. Swager, Richard Kingsborough, Shitong S. Zhu