Patents by Inventor Timothy Michael Grewe

Timothy Michael Grewe has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6478100
    Abstract: A hybrid electric vehicle (10) includes an internal combustion engine (12) which drives a generator (20) to produce electrical energy for a traction motor (44) of the vehicle. The generator (20) is provided with a cooling air intake port (20i). A air mover or compressor (30) is driven from the engine (12) or from an auxiliary motor (84), to produce air under positive pressure. The air from the air mover (30) is coupled by air paths (60, 62, 64) to the cooling air input port (20i) of the generator (20) and to the combustion air aspiration or input port (16) of the engine (12). If the air mover serves the purpose of cooling the generator (20) and, if a non-positive-displacement pump, also provides an effect similar to turbocharging, and if a positive-displacement type, supercharges the engine (12).
    Type: Grant
    Filed: August 5, 1999
    Date of Patent: November 12, 2002
    Assignee: Bae Systems Controls, inc.
    Inventor: Timothy Michael Grewe
  • Patent number: 6417577
    Abstract: In an electric vehicle, the traction motor is driven from a battery by way of a controllable electric power switcher. In operation of the switcher, the power losses of the switches depends upon the power being handled; during acceleration the power is high, and at constant speed on level ground the power is small. Thus, the power “dissipated” by the switches varies with time. A cooler transfers heat from the switcher. During acceleration, the cooler may not be sufficient to limit the instantaneous switch temperature. A phase-change heat “sink” coupled to the switches absorbs heat from the switches during hard acceleration, and returns the heat to the cooler under more constant-speed conditions.
    Type: Grant
    Filed: March 29, 2001
    Date of Patent: July 9, 2002
    Assignee: Bae Systems Controls
    Inventors: Timothy Michael Grewe, Steve William Osovski
  • Patent number: 6362535
    Abstract: A vehicle includes an arrangement, such as an internal-combustion engine coupled with a generator, for converting the energy in fuel into electrical form, while generating exhaust. An exhaust cleaning arrangement, such as a catalytic converter, preferably operating at a high temperature, cleanses the exhaust. During deceleration of the vehicle, excess electrical energy is used to heat the exhaust cleaning arrangement.
    Type: Grant
    Filed: July 21, 2000
    Date of Patent: March 26, 2002
    Assignee: Bae Systems
    Inventors: Steven Clare Tilyou, Timothy Michael Grewe, Peter Frederic Hamilton
  • Publication number: 20020024221
    Abstract: In an electric vehicle, the traction motor is driven from a battery by way of a controllable electric power switcher. In operation of the switcher, the power losses of the switches depends upon the power being handled; during acceleration the power is high, and at constant speed on level ground the power is small. Thus, the power “dissipated” by the switches varies with time. A cooler transfers heat from the switcher. During acceleration, the cooler may not be sufficient to limit the instantaneous switch temperature. A phase-change heat “sink” coupled to the switches absorbs heat from the switches during hard acceleration, and returns the heat to the cooler under more constant-speed conditions.
    Type: Application
    Filed: March 29, 2001
    Publication date: February 28, 2002
    Inventors: Timothy Michael Grewe, Steve William Osovski
  • Patent number: 6239502
    Abstract: In an electric vehicle, the traction motor is driven from a battery by way of a controllable electric power switching arrangement. In normal operation of the switches of the switching arrangement, the power losses or heating of the switches depends upon the power being handled; during hard acceleration the power is high, and at constant speed on level ground the power is relatively small. Thus, the power “dissipated” by the switches varies with time. A cooling system transfers heat from the switching arrangement to ambient. During acceleration, the cooling system may not be able to limit the instantaneous temperature of the switches to the desired value. A phase-change heat “sink” coupled to the switches absorbs heat from the switches during hard acceleration, and returns the heat to the cooling system under more constant-speed conditions.
    Type: Grant
    Filed: November 22, 1999
    Date of Patent: May 29, 2001
    Assignee: BAE Systems Controls
    Inventors: Timothy Michael Grewe, Steve William Osovski
  • Patent number: 6124645
    Abstract: A hill-holding arrangement for an electrically driven vehicle includes a vehicle with a "gas pedal" which generates a torque command signal T.sub.CMD. A switch (314) couples T.sub.CMD to a motor controller (316, 14) which drives the motor (40) and therefore the vehicle. When the "gas pedal" calls for zero torque, and the vehicle speed is zero, the switch responds to logic (FIG. 5), and substitutes a position-holding torque command signal T.sub..theta. for the operator-controlled torque command signal T.sub.CMD. Position controlling torque command T.sub..theta. is generated by a controller (312) which receives a position signal representative of the angular position .theta. of the rotor. The position-holding torque control loop then produces such torque as may be required to prevent the rotor of the motor from moving from its commanded position.
    Type: Grant
    Filed: November 16, 1998
    Date of Patent: September 26, 2000
    Assignee: Lockheed Martin Corporation
    Inventors: Christopher Charles Jones, Timothy Michael Grewe
  • Patent number: 6116368
    Abstract: An electric vehicle is controlled to conform its operation to that of a conventional internal-combustion-engine powered vehicle. In some embodiments, the charging of the batteries by the auxiliary source of electricity and from dynamic braking is ramped in magnitude when the batteries lie in a state of charge between partial charge and full charge, with the magnitude of the charging being related to the relative state of charge of the battery. The deficiency between traction motor demand and the energy available from the auxiliary electrical source is provided from the batteries in an amount which depends upon the state of the batteries, so that the full amount of the deficiency is provided when the batteries are near full charge, and little or no energy is provided by the batteries when they are near a discharged condition. At charge states of the batteries between near-full-charge and near-full-discharge, the batteries supply an amount of energy which depends monotonically upon the charge state.
    Type: Grant
    Filed: March 20, 1998
    Date of Patent: September 12, 2000
    Assignee: Lockheed Martin Corp.
    Inventors: Arthur Paull Lyons, Timothy Michael Grewe
  • Patent number: 6091228
    Abstract: A controller for a hybrid electric system such as a hybrid electric vehicle includes a load, a battery, and a controllable source of auxiliary electricity. The state of charge (SOC) of the battery is estimated, and an error signal is generated which represents the difference between a desired and actual SOC. The SOC error signal is processed by at least integration, to produce a source signal representing the desired auxiliary source current. A second error signal is generated between the actual current. from the auxiliary source and the desired current from the auxiliary source. The second error signal is processed, at least by integration, to produce a control signal for controlling the auxiliary signal source.
    Type: Grant
    Filed: October 22, 1998
    Date of Patent: July 18, 2000
    Assignee: Lockheed Martin Corp.
    Inventors: Christine Marie Chady, Arthur Paull Lyons, Timothy Michael Grewe
  • Patent number: 6055466
    Abstract: An electric vehicle (10) includes a traction motor (26) which drives the wheels (30a, 30b) by way of a differential (28), if desired. The traction motor (26) is controlled by a controller (24) which responds to torque command signals, to cause the motor (26) to produce the commanded torque. An accelerator pedal (12) is coupled to a position transducer (16) which converts pedal position into digital signals. The digital signals representing pedal position are applied as addresses to a memory (22) to access the stored signals. The memory is preprogrammed with torque signals representing the torque desired at a given pedal depression. In a preferred embodiment, the preprogrammed signals represent torques which are monotonically related to the pedal position, although some deviation may be acceptable in small portions of the operating range. The memory signals resulting from a given pedal position are applied to the controller, for causing the controller to command the motor to produce the specified torque.
    Type: Grant
    Filed: August 5, 1999
    Date of Patent: April 25, 2000
    Assignee: Lockheed Martin Corp.
    Inventor: Timothy Michael Grewe
  • Patent number: 6037672
    Abstract: In an electrical power generation unit with a prime mover having an output shaft rotating at a speed .omega. which determines an output power function having at each value of .omega. an output-power/.omega. slope M.sub.d, and a generator developing electrical power responsive to shaft rotation, a generator electrical impedance is selected to provide a generator output-power/.omega. slope M.sub.g to approximate the M.sub.d slope, so that .omega. can be controlled to maximize efficiency.
    Type: Grant
    Filed: February 9, 1998
    Date of Patent: March 14, 2000
    Assignee: LockHeed Martin Corporation
    Inventor: Timothy Michael Grewe
  • Patent number: 5941328
    Abstract: An electric vehicle is controlled to conform its operation to that of a conventional internal-combustion-engine powered vehicle. In some embodiments, the charging of the batteries by the auxiliary source of electricity and from dynamic braking is ramped in magnitude when the batteries lie in a state of charge between partial charge and full charge, with the magnitude of the charging being related to the relative state of charge of the battery. The deficiency between traction motor demand and the energy available from the auxiliary electrical source is provided from the batteries in an amount which depends upon the state of the batteries, so that the full amount of the deficiency is provided when the batteries are near full charge, and little or no energy is provided by the batteries when they are near a discharged condition. At charge states of the batteries between near-full-charge and near-full-discharge, the batteries supply an amount of energy which depends monotonically upon the charge state.
    Type: Grant
    Filed: March 20, 1998
    Date of Patent: August 24, 1999
    Assignee: Lockheed Martin Corporation
    Inventors: Arthur Paull Lyons, Timothy Michael Grewe
  • Patent number: 5929595
    Abstract: An electric vehicle is controlled to conform its operation to that of a conventional internal-combustion-engine powered vehicle. In some embodiments, the charging of the batteries by the auxiliary source of electricity and from dynamic braking is ramped in magnitude when the batteries lie in a state of charge between partial charge and full charge, with the magnitude of the charging being related to the relative state of charge of the battery. The deficiency between traction motor demand and the energy available from the auxiliary electrical source is provided from the batteries in an amount which depends upon the state of the batteries, so that the full amount of the deficiency is provided when the batteries are near full charge, and little or no energy is provided by the batteries when they are near a discharged condition. At charge states of the batteries between near-full-charge and near-full-discharge, the batteries supply an amount of energy which depends monotonically upon the charge state.
    Type: Grant
    Filed: March 20, 1998
    Date of Patent: July 27, 1999
    Assignee: Lockheed Martin Corporation
    Inventors: Arthur Paull Lyons, Timothy Michael Grewe
  • Patent number: 5910722
    Abstract: An electric vehicle is controlled to conform its operation to that of a conventional internal-combustion-engine powered vehicle. In some embodiments, the charging of the batteries by the auxiliary source of electricity and from dynamic braking is ramped in magnitude when the batteries lie in a state of charge between partial charge and full charge, with the magnitude of the charging being related to the relative state of charge of the battery. The deficiency between traction motor demand and the energy available from the auxiliary electrical source is provided from the batteries in an amount which depends upon the state of the batteries, so that the full amount of the deficiency is provided when the batteries are near full charge, and little or no energy is provided by the batteries when they are near a discharged condition. At charge states of the batteries between near-full-charge and near-full-discharge, the batteries supply an amount of energy which depends monotonically upon the charge state.
    Type: Grant
    Filed: March 20, 1998
    Date of Patent: June 8, 1999
    Assignee: Lockheed Martin Corp.
    Inventors: Arthur Paull Lyons, Timothy Michael Grewe
  • Patent number: 5869950
    Abstract: A hybrid electric vehicle includes a lead-acid traction battery made up of a plurality of series-connected modules. During operation of the vehicle, the traction battery is discharged for acceleration, and charged by an ancillary power source. To maximize the capacity of the traction battery to accept regeneration charge current from dynamic braking, and to produce useful traction motor current, the modules of the traction battery are equalized during normal operation of the hybrid electric vehicle.
    Type: Grant
    Filed: October 30, 1997
    Date of Patent: February 9, 1999
    Assignee: Lockheed Martin Corp.
    Inventors: David William Hoffman, Jr., Timothy Michael Grewe
  • Patent number: 5828201
    Abstract: A hybrid electric vehicle includes a lead-acid traction battery made up of a plurality of series-connected modules. During operation of the vehicle, the traction battery is discharged for acceleration, and charged by an ancillary power source. The traction battery is desirably not fully charged at the beginning of a day's operation, so that overcharging cannot occur, so the battery spends long periods of time in a partially charged condition. When not fully charged for long periods of time, sulfation may reduce the charge storage capacity of the battery. A maintenance procedure takes place when the vehicle is not operating, in which one or more modules of the traction battery, but less than all the modules, are fully charged, then partially discharged. The full charging tends to reduce sulfation in the particular module being maintained, and the partial discharge restores its charge condition to that prior to the full charge. Each of the modules is eventually maintained by a programmed controller.
    Type: Grant
    Filed: October 30, 1997
    Date of Patent: October 27, 1998
    Assignee: Lockheed Martin Corporation
    Inventors: David William Hoffman, Jr., Timothy Michael Grewe