Patents by Inventor Timothy Michael Gross

Timothy Michael Gross has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10688756
    Abstract: A cover element for a foldable electronic device that includes a foldable glass element, first and second primary surfaces, and a compressive stress region extending from the first primary surface to a first depth that is defined by a stress ?I of at least about 100 MPa in compression at the first primary surface. The device also includes a polymeric layer disposed over the first primary surface. The glass element has a stress profile such that when the glass element is bent to a target bend radius of from 1 mm to 20 mm, to induce a bending stress ?B at the first primary surface in tension, ?I+?B<400 MPa (in tension). Further, the cover element can withstand a pen drop height of at least 1.5 times that of a control pen drop height of the cover element without the layer according to a Drop Test 1.
    Type: Grant
    Filed: January 13, 2017
    Date of Patent: June 23, 2020
    Assignee: Corning Incorporated
    Inventors: Polly Wanda Chu, Michael Patrick Donovan, Timothy Michael Gross, Louis Mattos, Jr., Prakash Chandra Panda, Robert Lee Smith, III
  • Publication number: 20200189970
    Abstract: In one or more embodiments disclosed herein, an electronic device may include a display device operable to project an image, a front cover substrate positioned over the display device and including a transparent material, and a protective coating disposed on at least a portion of the non-display area of the front cover substrate. The front cover substrate may include a display area over the display device and a non-display area around at least the perimeter of the front cover substrate. The protective coating may include an inorganic material. The protective coating may not be positioned over the display area.
    Type: Application
    Filed: August 20, 2018
    Publication date: June 18, 2020
    Applicant: Corning Incorporated
    Inventors: Dana Craig Bookbinder, Timothy Michael Gross
  • Publication number: 20200180999
    Abstract: Alkali aluminosilicate glasses that are resistant to damage due to sharp impact and capable of fast ion exchange are provided. The glasses comprise at least 4 mol % P2O5 and, when ion exchanged, have a Vickers indentation crack initiation load of at least about 7 kgf.
    Type: Application
    Filed: February 18, 2020
    Publication date: June 11, 2020
    Inventor: Timothy Michael Gross
  • Publication number: 20200181000
    Abstract: Glasses that undergo rapid ion exchange. The glasses comprise SiO2, Al2O3, P2O5, Na2O, K2O, and, in some embodiments, at least one of MgO and ZnO. The glass may, for example, be ion exchanged in a molten KNO3 salt bath in less than 1 hour at temperatures in a range from about 370° C. to about 390° C. to achieve a depth of surface compressive layer of greater than about 45 microns, or in a range from about 0.05t to about 0.22t, where t is the thickness of the glass. The glasses are fusion formable and, in some embodiments, compatible with zircon.
    Type: Application
    Filed: February 3, 2020
    Publication date: June 11, 2020
    Inventors: Timothy Michael Gross, Xiaoju Guo
  • Publication number: 20200156997
    Abstract: Laminated glass articles and glass-based articles are disclosed. According to one embodiment, a laminated glass article includes a glass core layer comprising an average core coefficient of thermal expansion CTEC and at least one glass clad layer fused directly to the glass core layer, the at least one glass clad layer comprising an average clad coefficient of thermal expansion CTECL. CTEC is greater than or equal to CTECL. The glass core layer, the glass clad layer, or both, include a hydrogen-containing core zone.
    Type: Application
    Filed: November 13, 2019
    Publication date: May 21, 2020
    Inventors: Timothy Michael Gross, Adam Robert Sarafian, Jingshi Wu, Zheming Zheng
  • Publication number: 20200156996
    Abstract: Glass-based articles that include a compressive stress layer extending from a surface of the glass-based article to a depth of compression are formed by exposing glass-based substrates to water vapor containing environments. The methods of forming the glass-based articles may include elevated pressures and/or multiple exposures to water vapor containing environments.
    Type: Application
    Filed: November 13, 2019
    Publication date: May 21, 2020
    Inventors: Timothy Michael Gross, Adam Robert Sarafian, Jingshi Wu, Zheming Zheng
  • Publication number: 20200156995
    Abstract: Glass-based articles that include a compresive stress layer extending from a surface of the glass-based article to a depth of compression are formed by exposing glass-based substrates to water vapor containing environments. The glas-based substrates are substantially free or free of alkali metal oxides. The methods of forming the glass-based articles may include elevated pressures and/or multiple exposures to water vapor containing environments.
    Type: Application
    Filed: November 13, 2019
    Publication date: May 21, 2020
    Inventors: Timothy Michael Gross, Adam Robert Sarafian, Jingshi Wu, Zheming Zheng
  • Patent number: 10633279
    Abstract: A glass composition includes: from 55.0 mol % to 70.0 mol % SiO2; from 12.0 mol % to 20.0 mol % Al2O3; from 5.0 mol % to 15.0 mol % Li2O; and from 4.0 mol % to 15.0 mol % Na2O. The glass composition has the following relationships ?8.00 mol %?R2O+RO—Al2O3—B2O3—P2O5??1.75 mol %, 9.00?(SiO2+Al2O3+Li2O)/Na2O, and (Li2O+Al2O3+P2O5)/(Na2O+B2O3)?3.50. The glass composition may be used in a glass article or a consumer electronic product.
    Type: Grant
    Filed: November 28, 2018
    Date of Patent: April 28, 2020
    Assignee: CORNING INCORPORATED
    Inventors: Timothy Michael Gross, Xiaoju Guo, Peter Joseph Lezzi, Alexandra Lai Ching Kao Andrews Mitchell, Rostislav Vatchev Roussev
  • Publication number: 20200123050
    Abstract: Embodiments of this disclosure pertain to glass articles that comprise a maximum CS magnitude (CSmax) of about 900 MPa or greater, a CS magnitude of 750 MPa or greater at a depth of about 5 micrometers, and a maximum CT magnitude (CTmax) disposed at a depth from the first major surface in a range from about 0.25t to about 0.75t. Embodiments of a curved glass article are also disclosed. In one or more embodiments, such curved glass articles include the first major concave surface comprising a maximum radius of curvature of about 100 mm or greater and a first maximum CS value (CSmax1) of greater than about 800 MPa, a second major convex surface comprising a second maximum CS value (CSmax2), wherein the CSmax2 is less than CSmax1. Embodiments of an automotive interior system including such curved glass articles and methods of making glass articles are also disclosed.
    Type: Application
    Filed: October 18, 2019
    Publication date: April 23, 2020
    Inventors: Matthew Lee Black, Timothy Michael Gross, Khaled Layouni
  • Publication number: 20200123046
    Abstract: Glass-ceramics and precursor glasses that are crystallizable to glass-ceramics are disclosed. The glass-ceramics of one or more embodiments include rutile, anatase, armalcolite or a combination thereof as the predominant crystalline phase. Such glasses and glass-ceramics may include compositions of, in mole %: SiO2 in the range from about 45 to about 75; Al2O3 in the range from about 4 to about 25; P2O5 in the range from about 0 to about 10; MgO in the range from about 0 to about 8; R2O in the range from about 0 to about 33; ZnO in the range from about 0 to about 8; ZrO2 in the range from about 0 to about 4; B2O3 in the range from about 0 to about 12, and one or more nucleating agents in the range from about 0.5 to about 12. In some glass-ceramic articles, the total crystalline phase includes up to 20% by weight of the glass-ceramic article.
    Type: Application
    Filed: December 16, 2019
    Publication date: April 23, 2020
    Inventors: Matthew John Dejneka, Qiang Fu, Timothy Michael Gross, Xiaoju Guo, Sumalee Likitvanichkul, John Christopher Mauro
  • Publication number: 20200117302
    Abstract: Embodiments of a vehicle interior system are disclosed. In one or more embodiments, the system includes a base with a curved surface, and a display or touch panel disposed on the curved surface. The display includes a cold-bent glass substrate with a thickness of 1.5 mm or less and a first radius of curvature of 20 mm or greater, and a display module and/or touch panel attached to the glass substrate having a second radius of curvature that is within 10% of the first radius of curvature. Methods for forming such systems are also disclosed.
    Type: Application
    Filed: July 6, 2018
    Publication date: April 16, 2020
    Inventors: Fabio Lopes Brandao Salgado, Thomas Michael Cleary, Steven Edward DeMartino, Timothy Michael Gross, Atul Kumar, Cheng-Chung Li, Torsten Nath, Wendell Porter Weeks
  • Publication number: 20200117303
    Abstract: Embodiments of a vehicle interior system are disclosed. In one or more embodiments, the system includes a base with a curved surface, and a display or touch panel disposed on the curved surface. The display includes a cold-bent glass substrate with a thickness of 1.5 mm or less and a first radius of curvature of 20 mm or greater, and a display module and/or touch panel attached to the glass substrate having a second radius of curvature that is within 10% of the first radius of curvature. Methods for forming such systems are also disclosed.
    Type: Application
    Filed: July 6, 2018
    Publication date: April 16, 2020
    Inventors: Fabio Lopes Brandao Salgado, Thomas Michael Cleary, Steven Edward DeMartino, Timothy Michael Gross, Atul Kumar, Cheng-Chung Li, Torsten Nath, Wendell Porter Weeks
  • Publication number: 20200079682
    Abstract: Embodiments are directed to glass articles which are resistant to UV photodarkening, the glass articles having a thickness ?1.3 mm and comprise UV absorbers such as Ti, V, Mn, Fe, Cu, Ce, Ge, Mo, Cr, Co and Ni, and combinations thereof, or alternatively comprising ZnO or SnO2.
    Type: Application
    Filed: November 13, 2019
    Publication date: March 12, 2020
    Inventors: Dana Craig Bookbinder, Nicholas Francis Borrelli, Matthew John Dejneka, Timothy Michael Gross, Xiaoju Guo, Ronald Leroy Stewart
  • Publication number: 20200062636
    Abstract: Embodiments of thermally and chemically strengthened glass-based articles are disclosed. In one or more embodiments, the glass-based articles may include a first surface and a second surface opposing the first surface defining a thickness (t), a first CS region comprising a concentration of a metal oxide that is both non-zero and varies along a portion of the thickness, and a second CS region being substantially free of the metal oxide of the first CS region, the second CS region extending from the first surface to a depth of compression of about 0.17?t or greater. In one or more embodiments, the first surface is flat to 100 ?m total indicator run-out (TIR) along any 50 mm or less profile of the first surface. Methods of strengthening glass sheets are also disclosed, along with consumer electronic products, laminates and vehicles including the same are also disclosed.
    Type: Application
    Filed: October 28, 2019
    Publication date: February 27, 2020
    Inventors: John Philip Finkeldey, Linda Gaskill, Timothy Michael Gross, Peter Joseph Lezzi, Richard Orr Maschmeyer, Charlene Marie Smith, John Christopher Thomas, Kevin Lee Wasson
  • Patent number: 10562806
    Abstract: Alkali aluminosilicate glasses that are resistant to damage due to sharp impact and capable of fast ion exchange are provided. The glasses comprise at least 4 mol % P2O5 and, when ion exchanged, have a Vickers indentation crack initiation load of at least about 7 kgf.
    Type: Grant
    Filed: September 6, 2017
    Date of Patent: February 18, 2020
    Assignee: CORNING INCORPORATED
    Inventor: Timothy Michael Gross
  • Patent number: 10550029
    Abstract: Glasses that undergo rapid ion exchange. The glasses comprise SiO2, Al2O3, P2O5, Na2O, K2O, and, in some embodiments, at least one of MgO and ZnO. The glass may, for example, be ion exchanged in a molten KNO3 salt bath in less than 1 hour at temperatures in a range from about 370° C. to about 390° C. to achieve a depth of surface compressive layer of greater than about 45 microns, or in a range from about 0.05t to about 0.22t, where t is the thickness of the glass. The glasses are fusion formable and, in some embodiments, compatible with zircon.
    Type: Grant
    Filed: December 16, 2016
    Date of Patent: February 4, 2020
    Assignee: CORNING INCORPORATED
    Inventors: Timothy Michael Gross, Xiaoju Guo
  • Patent number: 10544059
    Abstract: Glass-ceramics and precursor glasses that are crystallizable to glass-ceramics are disclosed. The glass-ceramics of one or more embodiments include rutile, anatase, armalcolite or a combination thereof as the predominant crystalline phase. Such glasses and glass-ceramics may include compositions of, in mole %: SiO2 in the range from about 45 to about 75; Al2O3 in the range from about 4 to about 25; P2O5 in the range from about 0 to about 10; MgO in the range from about 0 to about 8; R2O in the range from about 0 to about 33; ZnO in the range from about 0 to about 8; ZrO2 in the range from about 0 to about 4; B2O3 in the range from about 0 to about 12, and one or more nucleating agents in the range from about 0.5 to about 12. In some glass-ceramic articles, the total crystalline phase includes up to 20% by weight of the glass-ceramic article.
    Type: Grant
    Filed: September 15, 2017
    Date of Patent: January 28, 2020
    Assignee: CORNING INCORPORATED
    Inventors: Matthew John Dejneka, Qiang Fu, Timothy Michael Gross, Xiaoju Guo, Sumalee Likitvanichkul, John Christopher Mauro
  • Publication number: 20190375679
    Abstract: Glass-based articles comprise stress profiles providing improved fracture resistance. The glass-based articles herein provide high fracture resistance after multiple drops.
    Type: Application
    Filed: June 7, 2019
    Publication date: December 12, 2019
    Inventors: Timothy Michael Gross, Xiaoju Guo, Jason Thomas Harris, Peter Joseph Lezzi, Alexandra Lai Ching Kao Andr Mitchell, Pascale Oram, Kevin Barry Reiman, Rostislav Vatchev Roussev, Ljerka Ukrainczyk
  • Publication number: 20190373897
    Abstract: Embodiments of the present invention pertain to antimicrobial glass compositions, glasses and articles. The articles include a glass, which may include a glass phase and a cuprite phase. In other embodiments, the glasses include as plurality of Cu1+ ions, a degradable phase including B2O3, P2O5 and K2O and a durable phase including SiO2. Other embodiments include glasses having a plurality of Cu1+ ions disposed on the surface of the glass and in the glass network and/or the glass matrix. The article may also include a polymer. The glasses and articles disclosed herein exhibit a 2 log reduction or greater in a concentration of at least one of Staphylococcus aureus, Enterobacter aerogenes, Pseudomonas aeruginosa bacteria, Methicillin Resistant Staphylococcus aureus, and E. coli, under the EPA Test Method for Efficacy of Copper Alloy as a Sanitizer testing conditions and under Modified JIS Z 2801 for Bacteria testing conditions.
    Type: Application
    Filed: July 16, 2019
    Publication date: December 12, 2019
    Inventors: Dana Craig Bookbinder, Gary Stephen Calabrese, Timothy Michael Gross, Dayue Jiang, Jianguo Wang
  • Patent number: RE47837
    Abstract: A glass and an enclosure, including windows, cover plates, and substrates for mobile electronic devices comprising the glass. The glass has a crack initiation threshold that is sufficient to withstand direct impact, has a retained strength following abrasion that is greater than soda lime and alkali aluminosilicate glasses, and is resistant to damage when scratched. The enclosure includes cover plates, windows, screens, and casings for mobile electronic devices and information terminal devices.
    Type: Grant
    Filed: January 4, 2018
    Date of Patent: February 4, 2020
    Assignee: Corning Incorporated
    Inventors: Kristen L. Barefoot, Matthew John Dejneka, Sinue Gomez, Timothy Michael Gross, Nagaraja Shashidhar