Patents by Inventor Timothy Michael Gross

Timothy Michael Gross has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220298059
    Abstract: Ion exchangeable glasses containing SiO2, Al2O3, Na2O, MgO, B2O3, and P2O5 are provided. The compressive stresses of these ion exchanged glasses are greater than 900 megapascals (MPa) at a depth of 45 or 50 microns (?m) with some glasses exhibiting a compressive stress of at least 1 gigaPascals (GPa). The ion exchange rates of these glasses are much faster than those of other alkali aluminosilicate glasses and the ion exchanged glass is resistant damage to impact damage. A method of ion exchanging the glass is also provided.
    Type: Application
    Filed: June 6, 2022
    Publication date: September 22, 2022
    Inventors: Matthew John Dejneka, Sinue Gomez, Timothy Michael Gross, Xiaoju Guo
  • Publication number: 20220291712
    Abstract: Foldable apparatus comprise a foldable substrate foldable about an axis and a substrate thickness defined between a first major surface and a second major surface. The foldable substrate comprises a central portion positioned between a first portion and a second portion. The first portion comprising a substrate thickness. The central portion comprises a central thickness that is less than the substrate thickness. In some embodiments, a width of central portion is about 45 millimeters or less. Methods of making a foldable apparatus comprise forming a recess in a first major surface of the foldable substrate. In some embodiments, methods comprise chemically strengthening the foldable substrate.
    Type: Application
    Filed: August 28, 2020
    Publication date: September 15, 2022
    Inventors: SHINU BABY, NAIGENG CHEN, TIMOTHY MICHAEL GROSS, JASON THOMAS HARRIS, DHANANJAY JOSHI, YOUSEF KAYED QAROUSH, ARLIN LEE WEIKEL, TINGGE XU
  • Publication number: 20220289617
    Abstract: Phosphate glasses and glass-ceramics exhibit a positive percent kill as measured by United States EPA Test Method for Efficacy of Copper Alloy Surfaces as a Sanitizer and/or have a CIELAB L* value below 35, CIELAB a* and b* values within 5 of zero.
    Type: Application
    Filed: March 30, 2022
    Publication date: September 15, 2022
    Inventors: Timothy Michael Gross, Alexandra Lai Ching Kao Andrews Mitchell
  • Publication number: 20220287195
    Abstract: Foldable apparatus can comprise a foldable substrate comprising a substrate thickness and a central portion positioned between a first portion and a second portion. The central portion can comprise a central thickness less than the substrate thickness. A first maximum tensile stress of a first tensile stress region in the first portion and a second maximum tensile stress of the second tensile stress region in the second portion can be less than a third maximum tensile stress of a central tensile stress region in the central portion. Ribbons can comprise a ribbon thickness and a central portion positioned between a first portion and a second portion. The central portion can comprise a first central compressive stress region and a second central compressive stress region. In some embodiments, methods of processing a ribbon can comprise masking the first portion, masking the second portion, and chemically strengthening the central portion.
    Type: Application
    Filed: August 28, 2020
    Publication date: September 8, 2022
    Inventors: NAIGENG CHEN, MATTHEW WADE FENTON, TIMOTHY MICHAEL GROSS, YUHUI JIN, DHANANJAY JOSHI, KUAN-TING KUO, YOUSEF KAYED QAROUSH
  • Publication number: 20220274865
    Abstract: Embodiments of glass compositions, glass articles and chemically strengthened glass articles are disclosed. In one or more embodiments, the glass composition comprises Li2O, greater than about 0.9 mol % B2O3, Al2O3 in an amount greater than or equal to 10 mol %, and from about 60 mol % to about 80 mol % SiO2. Embodiments of the chemically strengthened glass article include a first major surface and an opposing second major surface defining a thickness t, a compressive stress layer extending from the first major surface to a depth of compression greater than about 0.12 t, a maximum compressive stress of about 200 MPa or greater, and a Knoop Lateral Cracking Scratch Threshold greater than about 6 N, as measured on either one of the first major surface and the second major surface. Methods for forming such chemically strengthened glass articles are also disclosed.
    Type: Application
    Filed: March 16, 2022
    Publication date: September 1, 2022
    Inventors: Timothy Michael Gross, Charlene Marie Smith
  • Publication number: 20220267202
    Abstract: Glass-based articles comprise stress profiles providing improved fracture resistance. The glass-based articles herein provide high fracture resistance after multiple drops.
    Type: Application
    Filed: May 12, 2022
    Publication date: August 25, 2022
    Inventors: Timothy Michael Gross, Xiaoju Guo, Jason Thomas Harris, Peter Joseph Lezzi, Alexandra Lai Ching Kao Andrews Mitchell, Pascale Oram, Kevin Barry Reiman, Rostislav Vatchev Roussev, Ljerka Ukrainczyk
  • Publication number: 20220259093
    Abstract: Glass-based articles that include a compressive stress layer extending from a surface of the glass-based article to a depth of compression are formed by exposing glass-based substrates to water vapor containing environments. The glass-based substrates have compositions selected to avoid the formation of haze during the treatment process. The methods of forming the glass-based articles may include elevated pressures and/or multiple exposures to water vapor containing environments selected to avoid the formation of haze during the treatment process.
    Type: Application
    Filed: May 2, 2022
    Publication date: August 18, 2022
    Inventors: Timothy Michael Gross, Jingshi Wu
  • Publication number: 20220250967
    Abstract: A glass substrate includes about 45 mol % to about 70 mol % SiO2, about 15 mol % to about 30 mol % Al2O3, about 7 mol % to about 20 mol % of Y2O3, and optionally 0 mol % to about 9 mol % of La2O3. The glass substrate has high modulus and fracture toughness.
    Type: Application
    Filed: June 4, 2020
    Publication date: August 11, 2022
    Inventors: Timothy Michael Gross, Alexandra Lai Ching Kao Andrews Mitchell
  • Patent number: 11407675
    Abstract: Glass articles that are resistant to coloration when exposed to ultraviolet light or plasma cleaning processes. The glass articles comprise or consist of an alkali aluminosilicate glass containing from about 0.1 mol % to about 1 mol % of at least one of ZrO2, Sb2O3, and Nb2O5; and less than about 400 ppm each of oxides of titanium, iron, germanium, cerium, nickel, cobalt, and europium.
    Type: Grant
    Filed: July 21, 2017
    Date of Patent: August 9, 2022
    Assignee: Corning Incorporated
    Inventors: Timothy Michael Gross, Xiaoju Guo
  • Publication number: 20220242777
    Abstract: Glass-based articles that include a compressive stress layer extending from a surface of the glass-based article to a depth of compression are formed by exposing glass-based substrates to water vapor containing environments. The glass-based substrates have compositions selected to be fusion formable, to be steam strengthen able, and to avoid the formation of platinum defects during the forming process. The methods of forming the glass-based articles may include elevated pressures and/or multiple exposures to water vapor containing environments.
    Type: Application
    Filed: April 25, 2022
    Publication date: August 4, 2022
    Inventors: Timothy Michael Gross, Jingshi Wu
  • Publication number: 20220240517
    Abstract: Embodiments of the present invention pertain to antimicrobial glass compositions, glasses and articles. The articles include a glass, which may include a glass phase and a cuprite phase. In other embodiments, the glasses include as plurality of Cu1+ ions, a degradable phase including B2O3, P2O5 and K2O and a durable phase including SiO2. Other embodiments include glasses having a plurality of Cu1+ ions disposed on the surface of the glass and in the glass network and/or the glass matrix. The article may also include a polymer. The glasses and articles disclosed herein exhibit a 2 log reduction or greater in a concentration of at least one of Staphylococcus aureus, Enterobacter aerogenes, Pseudomomas aeruginosa bacteria, Methicillin Resistant Staphylococcus aureus, and E. coli, under the EPA Test Method for Efficacy of Copper Alloy as a Sanitizer testing condition and under Modified JIS Z 2801 for Bacteria testing conditions.
    Type: Application
    Filed: April 18, 2022
    Publication date: August 4, 2022
    Inventors: Dana Craig Bookbinder, Gary Stephen Calabrese, Timothy Michael Gross, Dayue Jiang, Jianguo Wang
  • Patent number: 11377386
    Abstract: Glass-based articles that include a hydrogen-containing layer extending from the surface of the article to a depth of layer. The hydrogen-containing layer includes a hydrogen concentration that decreases from a maximum hydrogen concentration to the depth of layer. The glass-based articles exhibit a high Vickers indentation cracking threshold. Glass compositions that are selected to promote the formation of the hydrogen-containing layer and methods of forming the glass-based article are also provided.
    Type: Grant
    Filed: November 23, 2021
    Date of Patent: July 5, 2022
    Assignee: Corning Incorporated
    Inventors: Timothy Michael Gross, Georgiy M Guryanov
  • Publication number: 20220204386
    Abstract: Glass-based articles that include a reduced Youngs modulus layer extending from a surface of the glass-based article to a depth of layer and an optional compressive stress layer extending from a surface of the glass-based article to a depth of compression are formed by exposing glass-based substrates to water vapor containing environments. The methods of forming the glass-based articles may include elevated pressures and/or multiple exposures to water vapor containing environments. The glass-based articles may be utilized in foldable or flexible electronic devices.
    Type: Application
    Filed: May 12, 2020
    Publication date: June 30, 2022
    Inventors: Timothy Michael Gross, Adam Robert Sarafian, Jingshi Wu, Zheming Zheng
  • Patent number: 11370696
    Abstract: Glass-based articles that include a compressive stress layer extending from a surface of the glass-based article to a depth of compression are formed by exposing glass-based substrates to water vapor containing environments. The glass-based substrates have compositions selected to avoid the formation of haze during the treatment process. The methods of forming the glass-based articles may include elevated pressures and/or multiple exposures to water vapor containing environments selected to avoid the formation of haze during the treatment process.
    Type: Grant
    Filed: May 12, 2020
    Date of Patent: June 28, 2022
    Assignee: Corning Incorporated
    Inventors: Timothy Michael Gross, Jingshi Wu
  • Publication number: 20220184926
    Abstract: Disclosed herein are embodiments of a borosilicate glass composition as may be useful for windshield and other applications in particular due to unique fracture behavior.
    Type: Application
    Filed: June 30, 2021
    Publication date: June 16, 2022
    Inventors: Thomas Michael Cleary, Timothy Michael Gross, Jingshi Wu
  • Patent number: 11358372
    Abstract: A glass element having a thickness from 25 ?m to 125 ?m, a first primary surface, a second primary surface, and a compressive stress region extending from the first primary surface to a first depth, the region defined by a compressive stress GI of at least about 100 MPa at the first primary surface. Further, the glass element has a stress profile such that it does not fail when it is subject to 200,000 cycles of bending to a target bend radius of from 1 mm to 20 mm, by the parallel plate method. Still further, the glass element has a puncture resistance of greater than about 1.5 kgf when the first primary surface of the glass element is loaded with a tungsten carbide ball having a diameter of 1.5 mm.
    Type: Grant
    Filed: October 5, 2020
    Date of Patent: June 14, 2022
    Assignee: Corning Incorporated
    Inventors: Theresa Chang, Polly Wanda Chu, Patrick Joseph Cimo, Adam James Ellison, Timothy Michael Gross, Guangli Hu, Nicholas James Smith, Butchi Reddy Vaddi, Natesan Venkataraman
  • Patent number: 11352289
    Abstract: Ion exchangeable glasses containing SiO2, Al2O3, Na2O, MgO, B2O3, and P2O5 are provided. The compressive stresses of these ion exchanged glasses are greater than 900 megapascals (MPa) at a depth of 45 or 50 microns (?m) with some glasses exhibiting a compressive stress of at least 1 gigaPascals (GPa). The ion exchange rates of these glasses are much faster than those of other alkali aluminosilicate glasses and the ion exchanged glass is resistant damage to impact damage. A method of ion exchanging the glass is also provided.
    Type: Grant
    Filed: August 3, 2020
    Date of Patent: June 7, 2022
    Assignee: CORNING INCORPORATED
    Inventors: Matthew John Dejneka, Sinue Gomez, Timothy Michael Gross, Xiaoju Guo
  • Patent number: 11339084
    Abstract: Glass-based articles that include a compressive stress layer extending from a surface of the glass-based article to a depth of compression are formed by exposing glass-based substrates to water vapor containing environments. The glass-based substrates have compositions selected to be fusion formable, to be steam strengthen able, and to avoid the formation of platinum defects during the forming process. The methods of forming the glass-based articles may include elevated pressures and/or multiple exposures to water vapor containing environments.
    Type: Grant
    Filed: May 24, 2021
    Date of Patent: May 24, 2022
    Assignee: Corning Incorporated
    Inventors: Timothy Michael Gross, Jingshi Wu
  • Patent number: 11339088
    Abstract: Glass-based articles comprise stress profiles providing improved fracture resistance. The glass-based articles herein provide high fracture resistance after multiple drops.
    Type: Grant
    Filed: June 7, 2019
    Date of Patent: May 24, 2022
    Assignee: CORNING INCORPORATED
    Inventors: Timothy Michael Gross, Xiaoju Guo, Jason Thomas Harris, Peter Joseph Lezzi, Alexandra Lai Ching Kao Andrews Mitchell, Pascale Oram, Kevin Barry Reiman, Rostislav Vatchev Roussev, Ljerka Ukrainczyk
  • Publication number: 20220144686
    Abstract: Glass-based articles that include a compressive stress layer extending from a surface of the glass-based article to a depth of compression are formed by exposing glass-based substrates to water vapor containing environments. The glass-based substrates have compositions selected to avoid the formation of haze during the treatment process. The methods of forming the glass-based articles may include elevated pressures and/or multiple exposures to water vapor containing environments selected to avoid the formation of haze during the treatment process.
    Type: Application
    Filed: May 12, 2020
    Publication date: May 12, 2022
    Inventors: Timothy Michael Gross, Jingshi Wu