Patents by Inventor TIMOTHY NEWING

TIMOTHY NEWING has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240131268
    Abstract: A fluid injector system for delivering a multi-phase fluid injection to a patient and methods of fluid delivery is disclosed. Methods of creating and using a multi-aspect fluid path impedance model of the injector system are used. Modeling and adjustment of factors that affect impedance and prevent or reduce backflow, reduce the likelihood of fluid flow rate spikes and provide more accurate flow rates and mixing ratios of fluids may be repeated or happen essentially continuously during an injection. The adjustments may be determined before the injection or determined and/or adjusted during the injection. The determination may include sensor feedback commonly used in injectors such as pressure and position feedback as well as other sensors. In all cases, the user can be notified of adjustments through on-screen notices and/or through the recordation of the injection data by a control device of the injector at the conclusion of the injection.
    Type: Application
    Filed: November 27, 2023
    Publication date: April 25, 2024
    Inventors: Arthur Uber, III, Chelsea Marsh, William Barone, Michael McDermott, Timothy Newing, Michael Spohn, Vince Delbrugge, Ralph Schriver, Kevin Cowan, David Griffiths
  • Patent number: 11883636
    Abstract: A fluid injector system has at least one reciprocally operable piston having a piston head, and a plunger engagement mechanism associated with the piston head. The plunger engagement mechanism has a cam sleeve disposed within the piston head and movable relative to the piston head, the cam sleeve having one or more tracks defining a cam surface. The plunger engagement mechanism further has an actuator operatively connected to the cam sleeve for moving the cam sleeve relative to the piston head, and one or more pins disposed within the cam sleeve. The one or more pins are movable within the one or more tracks with movement of the cam sleeve between a first or withdrawn position, wherein the one or more pins are radially withdrawn into the piston head and a second or extended position, wherein the one or more pins protrude radially outward relative to an outer surface of the piston head.
    Type: Grant
    Filed: February 25, 2019
    Date of Patent: January 30, 2024
    Assignee: BAYER HEALTHCARE LLC
    Inventors: Shahab Taheri, Timothy Newing, Grant Karsten, Aiden Salm, Han Min Thu
  • Patent number: 11826553
    Abstract: A fluid injector system for delivering a multi-phase fluid injection to a patient and methods of fluid delivery is disclosed. Methods of creating and using a multi-aspect fluid path impedance model of the injector system are used. Modeling and adjustment of factors that affect impedance and prevent or reduce backflow, reduce the likelihood of fluid flow rate spikes and provide more accurate flow rates and mixing ratios of fluids may be repeated or happen essentially continuously during an injection. The adjustments may be determined before the injection or determined and/or adjusted during the injection. The determination may include sensor feedback commonly used in injectors such as pressure and position feedback as well as other sensors. In all cases, the user can be notified of adjustments through on-screen notices and/or through the recordation of the injection data by a control device of the injector at the conclusion of the injection.
    Type: Grant
    Filed: September 28, 2021
    Date of Patent: November 28, 2023
    Assignee: BAYER HEALTHCARE LLC
    Inventors: Arthur Uber, III, Chelsea Marsh, William Barone, Michael McDermott, Timothy Newing, Michael Spohn, Vince Delbrugge, Ralph Schriver, Kevin Cowan, David Griffiths
  • Publication number: 20230347043
    Abstract: A method of maintaining an overall flow rate during a sequential delivery of at least two fluids to a patient’s blood vessel includes delivering at least a first fluid into the patient’s blood vessel at a first flow rate, delivering at least a second fluid into the patient’s blood vessel at a second flow rate, and adjusting at least one of a first flow profile of the first flow rate and a second flow profile of the second flow rate to dampen a transient increase in the overall flow rate during a transition between delivering one of the first fluid and the second fluid to delivering the other of the first fluid and the second fluid.
    Type: Application
    Filed: June 9, 2023
    Publication date: November 2, 2023
    Inventors: Michael Spohn, Ralph Schriver, Arthur Uber, III, Ronald Heller, Kevin Cowan, Barry Tucker, Edward Rhinehart, Timothy Newing
  • Patent number: 11672902
    Abstract: A method of maintaining an overall flow rate during a sequential delivery of at least two fluids to a patient's blood vessel includes delivering at least a first fluid into the patient's blood vessel at a first flow rate, delivering at least a second fluid into the patient's blood vessel at a second flow rate, and adjusting at least one of a first flow profile of the first flow rate and a second flow profile of the second flow rate to dampen a transient increase in the overall flow rate during a transition between delivering one of the first fluid and the second fluid to delivering the other of the first fluid and the second fluid.
    Type: Grant
    Filed: January 25, 2021
    Date of Patent: June 13, 2023
    Assignee: BAYER HEALTHCARE LLC
    Inventors: Michael Spohn, Ralph Schriver, Arthur Uber, III, Ronald Heller, Kevin Cowan, Barry Tucker, Edward Rhinehart, Timothy Newing
  • Publication number: 20220047816
    Abstract: A fluid injector system for delivering a multi-phase fluid injection to a patient and methods of fluid delivery is disclosed. Methods of creating and using a multi-aspect fluid path impedance model of the injector system are used. Modeling and adjustment of factors that affect impedance and prevent or reduce backflow, reduce the likelihood of fluid flow rate spikes and provide more accurate flow rates and mixing ratios of fluids may be repeated or happen essentially continuously during an injection. The adjustments may be determined before the injection or determined and/or adjusted during the injection. The determination may include sensor feedback commonly used in injectors such as pressure and position feedback as well as other sensors. In all cases, the user can be notified of adjustments through on-screen notices and/or through the recordation of the injection data by a control device of the injector at the conclusion of the injection.
    Type: Application
    Filed: September 28, 2021
    Publication date: February 17, 2022
    Inventors: Arthur Uber, III, Chelsea Marsh, William Barone, Michael McDermott, Timothy Newing, Michael Spohn, Vince Delbrugge, Ralph Schriver, Kevin Cowan, David Griffiths
  • Patent number: 11141535
    Abstract: A fluid injector system for delivering a multi-phase fluid injection to a patient and methods of fluid delivery is disclosed. Methods of creating and using a multi-aspect fluid path impedance model of the injector system are used. Modeling and adjustment of factors that affect impedance and prevent or reduce backflow, reduce the likelihood of fluid flow rate spikes and provide more accurate flow rates and mixing ratios of fluids may be repeated or happen essentially continuously during an injection. The adjustments may be determined before the injection or determined and/or adjusted during the injection. The determination may include sensor feedback commonly used in injectors such as pressure and position feedback as well as other sensors. In all cases, the user can be notified of adjustments through on-screen notices and/or through the recordation of the injection data by a control device of the injector at the conclusion of the injection.
    Type: Grant
    Filed: August 28, 2018
    Date of Patent: October 12, 2021
    Assignee: BAYER HEALTHCARE LLC
    Inventors: Arthur Uber, III, Chelsea Marsh, William Barone, Michael McDermott, Timothy Newing, Michael Spohn, Vince Delbrugge, Ralph Schriver, Kevin Cowan, Barry Tucker, Ronald Heller, David Griffiths, Matthew Schrauder
  • Publication number: 20210138148
    Abstract: A method of maintaining an overall flow rate during a sequential delivery of at least two fluids to a patient's blood vessel includes delivering at least a first fluid into the patient's blood vessel at a first flow rate, delivering at least a second fluid into the patient's blood vessel at a second flow rate, and adjusting at least one of a first flow profile of the first flow rate and a second flow profile of the second flow rate to dampen a transient increase in the overall flow rate during a transition between delivering one of the first fluid and the second fluid to delivering the other of the first fluid and the second fluid.
    Type: Application
    Filed: January 25, 2021
    Publication date: May 13, 2021
    Inventors: MICHAEL SPOHN, RALPH SCHRIVER, ARTHUR UBER, III, RONALD HELLER, KEVIN COWAN, BARRY TUCKER, EDWARD RHINEHART, TIMOTHY NEWING
  • Patent number: 10898638
    Abstract: A method of maintaining an overall flow rate during a sequential delivery of at least two fluids to a patient's blood vessel includes delivering at least a first fluid into the patient's blood vessel at a first flow rate, delivering at least a second fluid into the patient's blood vessel at a second flow rate, and adjusting at least one of a first flow profile of the first flow rate and a second flow profile of the second flow rate to dampen a transient increase in the overall flow rate during a transition between delivering one of the first fluid and the second fluid to delivering the other of the first fluid and the second fluid.
    Type: Grant
    Filed: March 3, 2017
    Date of Patent: January 26, 2021
    Assignee: BAYER HEALTHCARE LLC
    Inventors: Michael Spohn, Ralph Schriver, Arthur E. Uber, III, Ronald Heller, Kevin Cowan, Barry Tucker, Edward Rhinehart, Timothy Newing
  • Publication number: 20200405972
    Abstract: A fluid injector system has at least one reciprocally operable piston having a piston head, and a plunger engagement mechanism associated with the piston head. The plunger engagement mechanism has a cam sleeve disposed within the piston head and movable relative to the piston head, the cam sleeve having one or more tracks defining a cam surface. The plunger engagement mechanism further has an actuator operatively connected to the cam sleeve for moving the cam sleeve relative to the piston head, and one or more pins disposed within the cam sleeve. The one or more pins are movable within the one or more tracks with movement of the cam sleeve between a first or withdrawn position, wherein the one or more pins are radially withdrawn into the piston head and a second or extended position, wherein the one or more pins protrude radially outward relative to an outer surface of the piston head.
    Type: Application
    Filed: February 25, 2019
    Publication date: December 31, 2020
    Inventors: SHAHAB TAHERI, TIMOTHY NEWING, GRANT KARSTEN, AIDEN SALM, HAN MIN THU
  • Patent number: 10857286
    Abstract: A method of maintaining an overall flow rate during a sequential delivery of at least two fluids to a patient's blood vessel includes delivering at least a first fluid into the patient's blood vessel at a first flow rate, delivering at least a second fluid into the patient's blood vessel at a second flow rate, and adjusting at least one of a first flow profile of the first flow rate and a second flow profile of the second flow rate to dampen a transient increase in the overall flow rate during a transition between delivering one of the first fluid and the second fluid to delivering the other of the first fluid and the second fluid.
    Type: Grant
    Filed: March 3, 2017
    Date of Patent: December 8, 2020
    Assignee: BAYER HEALTHCARE LLC
    Inventors: Michael Spohn, Ralph Schriver, Arthur E. Uber, III, Ronald Heller, Kevin Cowan, Barry Tucker, Edward Rhinehart, Timothy Newing
  • Publication number: 20200121860
    Abstract: A fluid injector system for delivering a multi-phase fluid injection to a patient and methods of fluid delivery is disclosed. Methods of creating and using a multi-aspect fluid path impedance model of the injector system are used. Modeling and adjustment of factors that affect impedance and prevent or reduce backflow, reduce the likelihood of fluid flow rate spikes and provide more accurate flow rates and mixing ratios of fluids may be repeated or happen essentially continuously during an injection. The adjustments may be determined before the injection or determined and/or adjusted during the injection. The determination may include sensor feedback commonly used in injectors such as pressure and position feedback as well as other sensors. In all cases, the user can be notified of adjustments through on-screen notices and/or through the recordation of the injection data by a control device of the injector at the conclusion of the injection.
    Type: Application
    Filed: August 28, 2018
    Publication date: April 23, 2020
    Inventors: Arthur UBER, III, Chelsea MARSH, William Barone, Michael MCDERMOTT, Timothy NEWING, Michael SPOHN, Vince DELBRUGGE, Ralph SCHRIVER, Kevin COWAN, Barry TUCKER, Ronald HELLER, David GRIFFITHS, Matthew SCHRAUDER
  • Publication number: 20190083699
    Abstract: A method of maintaining an overall flow rate during a sequential delivery of at least two fluids to a patient's blood vessel includes delivering at least a first fluid into the patient's blood vessel at a first flow rate, delivering at least a second fluid into the patient's blood vessel at a second flow rate, and adjusting at least one of a first flow profile of the first flow rate and a second flow profile of the second flow rate to dampen a transient increase in the overall flow rate during a transition between delivering one of the first fluid and the second fluid to delivering the other of the first fluid and the second fluid.
    Type: Application
    Filed: March 3, 2017
    Publication date: March 21, 2019
    Inventors: MICHAEL SPOHN, RALPH SCHRIVER, ARTHUR UBER, RONALD HELLER, KEVIN COWAN, BARRY TUCKER, EDWARD RHINEHART, TIMOTHY NEWING