Patents by Inventor Timothy Nielsen

Timothy Nielsen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240120810
    Abstract: A method and apparatus serve to mount a calibrated encoder assembly to an electric motor so that a sensor output signal waveform produced by the calibrated encoder assembly is aligned with a back electromotive force (BEMF) waveform of the electric motor. The calibrated encoder assembly is fixed to an alignment plate, which is attached to the electric motor. The electric motor is rotated using a servo driven functional tester and the BEMF waveform of the electric motor is measured. The sensor output signal waveform is measured, and the alignment plate is adjusted relative to the electric motor to align the sensor output signal waveform to the BEMF waveform. The alignment plate is secured to the electric motor in the adjusted orientation.
    Type: Application
    Filed: December 18, 2023
    Publication date: April 11, 2024
    Applicant: Nidec Motor Corporation
    Inventors: Jeremy Beck, Timothy H. Sullivan, Bruce Nielsen
  • Publication number: 20050172470
    Abstract: Methods and systems for large-scale airframe assembly are disclosed. In one embodiment, a method includes measuring a plurality of discrete point positions at least one of on and adjacent to at least one of a first and a second component, and measuring at least one surface position on the at least one of the first and second components. The measured positions are compared with a desired position information (e.g., a computer aided design model). The comparison may include applying a fitting routine to the measured positions and the desired position information. Next, a transformation matrix for improving the comparison between the measured positions and the desired position information is computed. At least one of the first and second components is then moved according to the transformation matrix. During movement, the plurality of discrete point positions may be monitored and provided to the position control system by a feedback loop.
    Type: Application
    Filed: February 6, 2004
    Publication date: August 11, 2005
    Inventors: James Cobb, Timothy Nielsen, John Palmateer, James DeLand
  • Patent number: 6502624
    Abstract: Methods for semisolid manufacturing of precision parts, turbine rotors for example, comprised of a plurality of high melting point alloys are given. Generally, a semisolid/thixotropic process is operated under vacuum utilizing a cooled mold. The process preferably comprises a vacuum chamber, inductive heaters to bring two or more high melting point slugs to either a solid or thixotropic phase, and a plunger that accelerates one or more high melting point solid slugs into one or more thixotropic slugs and then into a mold. Prior to heating, preconditioning at least one of the slugs to form a non-dendritic microstructure simplifies processing. The semisolid microstructure solidifies as the completed forged assembly cools. Thixotropic forging of a multi-alloy assembly achieves optimized properties in specific locations of the final product.
    Type: Grant
    Filed: April 18, 2000
    Date of Patent: January 7, 2003
    Assignee: Williams International Co., L.L.C.
    Inventors: Samuel B. Williams, Timothy A. Nielsen
  • Patent number: 6003585
    Abstract: Methods for semisolid manufacturing of precision parts, turbine rotors for example, comprised of a plurality of high melting point alloys are given. Generally, a semisolid/thixotropic process is operated under vacuum utilizing a removable mold. The process preferably comprises a vacuum chamber, an inductive heater to bring a high melting point multi-alloy slug to a thixotropic phase, a supercooled mold comprised of a low melting point alloy or metal, and a plunger that accelerates and injects the high melting point slug into the low melting point mold. As the formed part cools, the supercooled low melting point mold heats up to its melting point upon which separation from the formed part occurs. Supercooling of the removable mold permits the use of thixotropic methods for high melting point alloys. Thixotropic forging of a multi-alloy assembly tailors its mechanical properties to achieve optimized properties in specific locations of the final product.
    Type: Grant
    Filed: July 25, 1997
    Date of Patent: December 21, 1999
    Assignee: Williams International Co., L.L.C.
    Inventors: Samuel B. Williams, Timothy A. Nielsen
  • Patent number: 5878804
    Abstract: Methods for semisolid manufacturing of precision parts, turbine rotors for example, comprised of a plurality of high melting point alloys are given. Generally, a semisolid/thixotropic process is operated under vacuum utilizing a heated mold. The process preferably comprises a vacuum chamber, inductive heaters to bring two or more high melting point slugs to a either a solid or thixotropic phase, and a plunger that accelerates and injects a high melting point slug into the heated mold containing one or more solid or thixotropic slugs. The semisolid solution is eliminated as the completed forged assembly cools. Thixotropic forging of a multi-alloy assembly tailors its mechanical properties to achieve optimized properties in specific locations of the final product.
    Type: Grant
    Filed: July 25, 1997
    Date of Patent: March 9, 1999
    Assignee: Williams International Co. L.L.C.
    Inventors: Samuel B. Williams, Timothy A. Nielsen
  • Patent number: 5832982
    Abstract: Methods for semisolid manufacturing of precision parts, turbine rotors for example, comprised of high melting point alloys are given. Generally, a semisolid/thixotropic process is operated under vacuum utilizing a removable mold. The process preferably comprises a vacuum chamber, an inductive heater to bring a high melting point alloy to a thixotropic phase, a supercooled mold comprised of a low melting point alloy or metal, and a plunger that accelerates and injects the high melting point alloy into the low melting point mold. As the formed part cools, the supercooled low melting point mold heats up to its melting point upon which separation from the formed part occurs. Supercooling of the removable mold permits the use of thixotropic methods for high melting point alloys.
    Type: Grant
    Filed: January 29, 1997
    Date of Patent: November 10, 1998
    Assignee: Williams International Co., L.L.C.
    Inventors: Samuel B. Williams, Timothy A. Nielsen, James S. Prosser, William P. Schimmel