Patents by Inventor Timothy P. Walker

Timothy P. Walker has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9647788
    Abstract: Techniques for multiplexing and demultiplexing signals for optical transport networks are presented. A network component comprises a multiplexer component that multiplexes a plurality of signals having a first signal format to produce a multiplexed signal in accordance with a second signal format, while maintaining error correction code (ECC) of such signals and without decoding such signals and associated ECC. The multiplexer component interleaves the plurality of signals with stuffing and adds overhead without generating new ECC. A second network component receives the multiplexed signal as part of a frame in accordance with the second signal format. A demultiplexer component of the second network component demultiplexes the multiplexed signal using the original ECC associated with the plurality of signals, wherein the second network element removes and filters the stuffing from the multiplexed signal and produces a plurality of demultiplexed signals as an output, in accordance with the first signal format.
    Type: Grant
    Filed: February 12, 2013
    Date of Patent: May 9, 2017
    Assignee: APPLIED MICRO CIRCUITS CORPORATION
    Inventor: Timothy P. Walker
  • Patent number: 9369135
    Abstract: Systems and methods for generating gapped signals comprising a Delta Sigma Modulator (DSM) configured to generate gapping control signals used to control gap removal rates of an associated gapping unit. The DSM is configured to generate a gapping control signal based on a value of an overflow resulted from performing adding a first number with a remainder of a stored value modulo a second number. The gap removal rates as well as the gap removal resolutions can be adjusted by selecting appropriate values of the first number, the stored value, and the second number. The gapping resolution can be a portion of a pulse. The first number and the second number may be derived from an intended frequency ratio between a gapped signal and a corresponding input signal. The gapping unit may comprise a gapping circuit or a multi-modulus divider.
    Type: Grant
    Filed: March 18, 2013
    Date of Patent: June 14, 2016
    Assignee: Applied Micro Circuits Corporation
    Inventors: Yehuda Azenkot, Michael Grosner, Timothy P. Walker
  • Patent number: 9281825
    Abstract: Systems and methods for frequency synthesis using a gapper and a multi-modulus divider. A frequency synthesizer may comprise a gapper, a multi-modulus divider and a Phase Locked Loop (PLL). When a frequency of an output signal is intended to be greater than a corresponding input signal, a factor can be borrowed by the gapper from the divider to generate a rational divide ratio G that is greater 1 in order for the gapper to be capable of performing the division by G. The PLL is capable of multiplying a gapped signal output from the first integer divider and attenuating jitter from the gapped signal.
    Type: Grant
    Filed: August 26, 2014
    Date of Patent: March 8, 2016
    Assignee: Applied Micro Circuits Corporation
    Inventors: Yehuda Azenkot, Michael Grosner, Timothy P. Walker
  • Patent number: 9065610
    Abstract: Systems and methods for smoothing jitter generated by byte stuffing. A frequency synthesizer comprises a smoothing logic coupled with a PLL. The smoothing logic is configured to modify a phase error signal generated by a phase frequency detector into a distributed phase error signal that spread over multiple clock cycles. The distributed phase error signal is used to drive a DCO. The smoothing logic may comprise a ramping logic operable to generate a series of ramping values to substitute a phase difference in the phase error signal. The phase difference may correspond to a stuffing byte.
    Type: Grant
    Filed: April 18, 2013
    Date of Patent: June 23, 2015
    Assignee: Applied Micro Circuits Corporation
    Inventors: Yehuda Azenkot, Timothy P. Walker
  • Publication number: 20150110233
    Abstract: Systems and methods for efficient jitter mitigation or removal from a gapped signal. A phase mitigation module is employed to generate discrete correction values for modifying phase error signals detected between a gapped signal and a feedback signal of the PLL. The correction values can be digitally subtracted from the output of a phase frequency detector associated with the PLL. The sequence of correction values can be determined based on phase frequency differences between the input signal and a targeted feedback signal that is free of jitter and has a period equal to an average period of the input signal. An average of the correction values is substantially equal to zero, and an average of the modified phase error signal is substantially equal to zero.
    Type: Application
    Filed: October 23, 2013
    Publication date: April 23, 2015
    Applicant: Applied Micro Circuits Corporation
    Inventors: Yehuda AZENKOT, Timothy P. Walker
  • Patent number: 9008255
    Abstract: Systems and methods for efficient jitter mitigation or removal from a gapped signal. A phase mitigation module is employed to generate discrete correction values for modifying phase error signals detected between a gapped signal and a feedback signal of the PLL. The correction values can be digitally subtracted from the output of a phase frequency detector associated with the PLL. The sequence of correction values can be determined based on phase frequency differences between the input signal and a targeted feedback signal that is free of jitter and has a period equal to an average period of the input signal. An average of the correction values is substantially equal to zero, and an average of the modified phase error signal is substantially equal to zero.
    Type: Grant
    Filed: October 23, 2013
    Date of Patent: April 14, 2015
    Assignee: Applied Micro Circuits Corporation
    Inventors: Yehuda Azenkot, Timothy P. Walker
  • Publication number: 20140375364
    Abstract: Systems and methods for frequency synthesis using a gapper and a multi-modulus divider. A frequency synthesizer may comprise a gapper, a multi-modulus divider and a Phase Locked Loop (PLL). When a frequency of an output signal is intended to be greater than a corresponding input signal, a factor can be borrowed by the gapper from the divider to generate a rational divide ratio G that is greater 1 in order for the gapper to be capable of performing the division by G. The PLL is capable of multiplying a gapped signal output from the first integer divider and attenuating jitter from the gapped signal.
    Type: Application
    Filed: August 26, 2014
    Publication date: December 25, 2014
    Inventors: Yehuda AZENKOT, Michael GROSNER, Timothy P. WALKER
  • Publication number: 20140314192
    Abstract: Systems and methods for smoothing jitter generated by byte stuffing. A frequency synthesizer comprises a smoothing logic coupled with a PLL. The smoothing logic is configured to modify a phase error signal generated by a phase frequency detector into a distributed phase error signal that spread over multiple clock cycles. The distributed phase error signal is used to drive a DCO. The smoothing logic may comprise a ramping logic operable to generate a series of ramping values to substitute a phase difference in the phase error signal. The phase difference may correspond to a stuffing byte.
    Type: Application
    Filed: April 18, 2013
    Publication date: October 23, 2014
    Applicant: Applied Micro Circuits Corporation
    Inventors: Yehuda AZENKOT, Timothy P. WALKER
  • Publication number: 20140266328
    Abstract: Systems and methods for frequency synthesis using a gapper. A frequency synthesizer may comprise a gapper, a first integer divider and a Phase Locked Loop (PLL). When a frequency of an output signal is intended to be greater than a corresponding input signal, a factor can be borrowed by the gapper from the first integer divider to generate a rational divide ratio G that is greater 1 in order for the gapper to be capable of performing the division by G. The PLL is capable of multiplying a gapped signal output from the first integer divider and attenuating jitter from the gapped signal.
    Type: Application
    Filed: March 18, 2013
    Publication date: September 18, 2014
    Applicant: APPLIED MICRO CIRCUITS CORPORATION
    Inventors: Yehuda AZENKOT, Michael GROSNER, Timothy P. WALKER
  • Publication number: 20140266339
    Abstract: Systems and methods for generating gapped signals comprising a Delta Sigma Modulator (DSM) configured to generate gapping control signals used to control gap removal rates of an associated gapping unit. The DSM is configured to generate a gapping control signal based on a value of an overflow resulted from performing adding a first number with a remainder of a stored value modulo a second number. The gap removal rates as well as the gap removal resolutions can be adjusted by selecting appropriate values of the first number, the stored value, and the second number. The gapping resolution can be a portion of a pulse. The first number and the second number may be derived from an intended frequency ratio between a gapped signal and a corresponding input signal. The gapping unit may comprise a gapping circuit or a multi-modulus divider.
    Type: Application
    Filed: March 18, 2013
    Publication date: September 18, 2014
    Applicant: APPLIED MICRO CIRCUITS CORPORATION
    Inventors: Yehuda AZENKOT, Michael GROSNER, Timothy P. WALKER
  • Patent number: 8816730
    Abstract: Systems and methods for frequency synthesis using a gapper. A frequency synthesizer may comprise a gapper, a first integer divider and a Phase Locked Loop (PLL). When a frequency of an output signal is intended to be greater than a corresponding input signal, a factor can be borrowed by the gapper from the first integer divider to generate a rational divide ratio G that is greater 1 in order for the gapper to be capable of performing the division by G. The PLL is capable of multiplying a gapped signal output from the first integer divider and attenuating jitter from the gapped signal.
    Type: Grant
    Filed: March 18, 2013
    Date of Patent: August 26, 2014
    Assignee: Applied Micro Circuits Corporation
    Inventors: Yehuda Azenkot, Michael Grosner, Timothy P. Walker
  • Publication number: 20140226980
    Abstract: Techniques for multiplexing and demultiplexing signals for optical transport networks are presented. A network component comprises a multiplexer component that multiplexes a plurality of signals having a first signal format to produce a multiplexed signal in accordance with a second signal format, while maintaining error correction code (ECC) of such signals and without decoding such signals and associated ECC. The multiplexer component interleaves the plurality of signals with stuffing and adds overhead without generating new ECC. A second network component receives the multiplexed signal as part of a frame in accordance with the second signal format. A demultiplexer component of the second network component demultiplexes the multiplexed signal using the original ECC associated with the plurality of signals, wherein the second network element removes and filters the stuffing from the multiplexed signal and produces a plurality of demultiplexed signals as an output, in accordance with the first signal format.
    Type: Application
    Filed: February 12, 2013
    Publication date: August 14, 2014
    Applicant: APPLIED MICRO CIRCUITS CORPORATION
    Inventor: Timothy P. Walker
  • Patent number: 8649394
    Abstract: A system and method are provided for transmitting and receiving asynchronous channels of information via a SerDes Frame Interface (SFI) 4.2 interface. The SerDes device accepts a plurality of channels operating at asynchronous channel clock rates. Bytes of data from each channel are loaded into a source at the channel clock rates. Once loaded, the bytes of data for each channel are drained from the source at a line clock rate and interleaved into four 64-bit segments. A 2-bit control word is added to each segment, creating 66/64-bit data blocks. The control word indicates the validity of bytes of data within the 66/64-bit data blocks. Then, the 66/64 bit data blocks are transmitted via a SFI4.2 interface in four lanes, at a rate proportional to the line clock rate.
    Type: Grant
    Filed: October 14, 2010
    Date of Patent: February 11, 2014
    Assignee: Applied Micro Circuits Corporation
    Inventor: Timothy P. Walker
  • Patent number: 8223638
    Abstract: A high-capacity digital communications system and method of transporting 10 GbE LAN packets between user devices over an OTN network that allows the packets to be transported in a manner that is transparent to the destination device(s) on the network. The digital communications system includes an OTN network, and at least one source device and at least one destination device connected to the network via respective 10Gbase-R interfaces. The system transports 10 GbE LAN data packets over the OTN network by performing decoding on the packets to recover the preamble and variable length data contained in each packet, removing the IPG between successive packets in the stream, encapsulating the packets including the respective preambles and data, and mapping the encapsulated packets to the overhead and payload areas of ODUk frames. The packets are then transported over the OTN network from the source device to the destination device.
    Type: Grant
    Filed: February 13, 2009
    Date of Patent: July 17, 2012
    Assignee: Applied Micro Circuits Corporation
    Inventors: Timothy P Walker, Jay Quirk
  • Publication number: 20090238567
    Abstract: A ring connection system and method are provided for distributing signals in an optical-to-electrical interface. The method electrically connects a plurality of nodes in a series-connected ring, and receives an optical signal at a first node from a service provider. The method converts the optical signal to an electrical signal, and distributes the electrical signal via the ring. At each node, the electrical signal is supplied from a customer interface. Typically, each node has a plurality of customer interfaces. In one aspect, ITU-T G.984.3 Giagbit-capable Passive Optical Network (GPON) optical signals are received converted to a customer interface electrical signal such as an Ethernet, asynchronous transfer mode, or time division multiplexed signal. Electrically connecting the plurality of nodes in the series-connected ring includes: series connecting the nodes in a North ring; and, series connecting the nodes in a South ring, opposite in direction from the North ring.
    Type: Application
    Filed: June 2, 2009
    Publication date: September 24, 2009
    Inventors: Glen Miller, Armin Schulz, Timothy P. Walker
  • Patent number: 7561801
    Abstract: A ring connection system and method are providing for distributing signals in an optical-to-electrical interface. The method electrically connects a plurality of nodes in a series-connecting ring, and receives an optical signal at a first node from a service provider. The method converts the optical signal to an electrical signal, and distributes the electrical signal via the ring. At each node, the electrical signal is supplied from a customer interface. Typically, each node has a plurality of customer interfaces. In one aspect, ITU-T G.984.3 Giagbit-capable Passive Optical Network (GPON) optical signals are received converted to a customer interface electrical signal such as an Ethernet connecting transfer mode, or time division multiplexed signal. Electrically connecting the plurality of nodes in the series-connected ring includes: series connecting the nodes in a North ring; and, series connecting the nodes in a South ring, opposite in direction from the North ring.
    Type: Grant
    Filed: March 31, 2006
    Date of Patent: July 14, 2009
    Assignee: Applied Micro Circuits Corporation
    Inventors: Glen Miller, Armin Schulz, Timothy P. Walker
  • Publication number: 20090148161
    Abstract: A high-capacity digital communications system and method of transporting 10 GbE LAN packets between user devices over an OTN network that allows the packets to be transported in a manner that is transparent to the destination device(s) on the network. The digital communications system includes an OTN network, and at least one source device and at least one destination device connected to the network via respective 10Gbase-R interfaces. The system transports 10 GbE LAN data packets over the OTN network by performing decoding on the packets to recover the preamble and variable length data contained in each packet, removing the IPG between successive packets in the stream, encapsulating the packets including the respective preambles and data, and mapping the encapsulated packets to the overhead and payload areas of ODUk frames. The packets are then transported over the OTN network from the source device to the destination device.
    Type: Application
    Filed: February 13, 2009
    Publication date: June 11, 2009
    Applicant: Applied Micro Circuits Corporation
    Inventors: Timothy P. Walker, Jay Quirk
  • Patent number: 7512150
    Abstract: A high-capacity digital communications system and method of transporting 10 GbE LAN packets between user devices over an OTN network that allows the packets to be transported in a manner that is transparent to the destination device(s) on the network. The digital communications system includes an OTN network, and at least one source device and at least one destination device connected to the network via respective 10 Gbase-R interfaces. The system transports 10 GbE LAN data packets over the OTN network by performing decoding on the packets to recover the preamble and variable length data contained in each packet, removing the IPG between successive packets in the stream, encapsulating the packets including the respective preambles and data, and mapping the encapsulated packets to the overhead and payload areas of ODUk frames. The packets are then transported over the OTN network from the source device to the destination device.
    Type: Grant
    Filed: March 24, 2003
    Date of Patent: March 31, 2009
    Assignee: Applied Micro Circuits Corporation
    Inventors: Timothy P. Walker, Jay Quirk
  • Patent number: 7180914
    Abstract: A digital communications system that can asynchronously map/de-map digital signals from one clock domain to another, while reducing mapping jitter levels and permitting higher levels of integration. The digital communications system includes an asynchronous stuff bit insertion circuit, an asynchronous stuff bit removal circuit, and a communications network connected therebetween. The asynchronous stuff bit insertion circuit includes a first elastic store, a barrel shifter, and a stuffing circuit. The asynchronous stuff bit removal circuit includes a de-stuffing circuit, a second elastic store, and a frequency control path including a phase-locked loop having a variable divider circuit, the operation of which is controlled based on the presence/absence of stuff bits in the data provided to the de-stuffing circuit.
    Type: Grant
    Filed: August 19, 2002
    Date of Patent: February 20, 2007
    Assignee: Applied Micro Circuits Corporation
    Inventors: Timothy P. Walker, Jay Quirk, Sean Campeau
  • Publication number: 20040202198
    Abstract: A high-capacity digital communications system and method of transporting 10 GbE LAN packets between user devices over an OTN network that allows the packets to be transported in a manner that is transparent to the destination device(s) on the network. The digital communications system includes an OTN network, and at least one source device and at least one destination device connected to the network via respective 10 Gbase-R interfaces. The system transports 10 GbE LAN data packets over the OTN network by performing decoding on the packets to recover the preamble and variable length data contained in each packet, removing the IPG between successive packets in the stream, encapsulating the packets including the respective preambles and data, and mapping the encapsulated packets to the overhead and payload areas of ODUk frames. The packets are then transported over the OTN network from the source device to the destination device.
    Type: Application
    Filed: March 24, 2003
    Publication date: October 14, 2004
    Inventors: Timothy P. Walker, Jay Quirk