Patents by Inventor Timothy Peter Mollart

Timothy Peter Mollart has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230406732
    Abstract: A bonded diamond assembly and a method of forming the assembly. The assembly comprises a polycrystalline diamond wafer having a largest linear dimension of between 25 mm and 200 mm, a substrate and a bonding layer located between the diamond and the substrate and bonding them together. The bonding layer, when inspected using ultrasound using a resolution of 50 ?m, a focal length selected to inspect the bonding layer, and frequencies of 100 MHz and 30 MHz, comprises low numbers of voids extending either across the thickness of the bonding layer and low numbers of voids that do not extend across the thickness of the bonding layer.
    Type: Application
    Filed: November 12, 2021
    Publication date: December 21, 2023
    Applicant: Element Six Technologies Limited
    Inventors: Julian James Sargood Ellis, Timothy Peter Mollart, Hossein Zarrin, Daniel James Twitchen
  • Patent number: 11486037
    Abstract: A method of fabricating a plurality of single crystal CVD diamonds. The method includes mounting a plurality of single crystal diamond substrates on a first carrier substrate. The plurality of single crystal diamond substrates is subjected to a first CVD diamond growth process to form a plurality of single crystal CVD diamonds on the plurality of single crystal diamond substrates. The plurality of single crystal CVD diamonds are mounted in a recessed carrier substrate and subjected to a second CVD diamond growth process.
    Type: Grant
    Filed: November 8, 2017
    Date of Patent: November 1, 2022
    Assignee: Element Six Technologies Limited
    Inventors: Ben Llewelyn Green, Andrew Michael Bennett, Timothy Peter Mollart, Stefan Ian Olsson Robbie
  • Publication number: 20220181647
    Abstract: An electrode comprising synthetic high-pressure high-temperature diamond material, the diamond material comprising a substitutional boron concentration of between 1×1020 and 5×1021 atoms/cm3 and a nitrogen concentration of no more than 1019 atoms/cm3. The electrode has a ?E3/4-1/4 as measured with respect to a saturated calomel reference electrode in an aqueous solution containing 0.1 M KNO3 and 1 mM of Ru(NH3)63+ selected any of less than 70 mV, less than 68 mV, less than 66 mV, and less than 64 mV, and/or a peak to peak separation ?Ep as measured with respect to a saturated calomel reference electrode in an aqueous solution containing 0.1 M KNO3 and 1 mM of Ru(NH3)63+ selected any of less than 70 mV, less than 68 mV, less than 66 mV, and less than 64 mV.
    Type: Application
    Filed: April 6, 2020
    Publication date: June 9, 2022
    Applicants: ELEMENT SIX TECHNOLOGIES LIMITED, UNIVERSITY OF WARWICK
    Inventors: GEORGIA WOOD, TIMOTHY PETER MOLLART, JULIE VICTORIA MACPHERSON
  • Patent number: 11346012
    Abstract: An electrochemical cell for treating a fluid, the electrochemical cell comprising: at least two opposing electrodes defining a flow path for the fluid between the electrodes, where at least one of the electrodes is formed of electrically conductive diamond material; drive circuitry configured to apply a potential across the electrodes such that a current flows between the electrodes when the fluid is flowed through the flow path between the electrodes; and a housing in which the electrodes are disposed, the housing comprising pressure seals configured to containing the fluid within the fluid path and a support structure for supporting the electrodes, wherein the support structure and the pressure seals are configured such that the electrochemical cell has an operating pressure in a range 2 to 10 bar within which the electrodes are supported without fracturing and within which the fluid is contained within the flow path, wherein the electrodes are spaced apart by a distance in a range 0.
    Type: Grant
    Filed: November 25, 2016
    Date of Patent: May 31, 2022
    Assignee: Element Six Technologies Ltd
    Inventors: Julian James Sargood Ellis, Timothy Peter Mollart, John Robert Brandon
  • Patent number: 11209379
    Abstract: An electrochemical sensor comprising: a boron doped diamond electrode formed of boron doped diamond material; an array of non-diamond carbon sites disposed on a sensing surface of the boron doped diamond electrode; electrochemically active surface groups bonded to the non-diamond carbon sites for generating a redox peak associated with a target species which reacts with the electrochemically active surface groups bonded to the non-diamond carbon sites when a solution containing the target species is disposed in contact with the sensing surface in use; an electrical controller configured to scan the boron doped diamond electrode over a potential range to generate said redox peak; and a processor configured to give an electrochemical reading based on one or both of a position and an intensity of said redox peak.
    Type: Grant
    Filed: November 20, 2015
    Date of Patent: December 28, 2021
    Assignee: Element Six Technologies Limited
    Inventors: Laura Anne Hutton, Maxim Bruckshaw Joseph, Roy Edward Patrick Meyler, Julie Victoria Macpherson, Timothy Peter Mollart, Zoe Ayers
  • Patent number: 10689977
    Abstract: An earth-boring drilling tool comprises a cutting element. The cutting element comprises a substrate, a diamond table, and at least one sensing element formed from a doped diamond material disposed at least partially within the diamond table. A method for determining an at-bit measurement for an earth-boring drill bit comprises receiving an electrical signal generated within a doped diamond material disposed within a diamond table of a cutting element of the earth-boring drill bit, and correlating the electrical signal with at least one parameter during a drilling operation.
    Type: Grant
    Filed: July 10, 2018
    Date of Patent: June 23, 2020
    Assignees: Baker Hughes, a GE company, LLC, Element Six Limited
    Inventors: Danny E. Scott, Timothy Peter Mollart, John Robert Brandon
  • Publication number: 20200087782
    Abstract: A method of fabricating a plurality of single crystal CVD diamonds. The method includes mounting a plurality of single crystal diamond substrates on a first carrier substrate. The plurality of single crystal diamond substrates is subjected to a first CVD diamond growth process to form a plurality of single crystal CVD diamonds on the plurality of single crystal diamond substrates. The plurality of single crystal CVD diamonds are mounted in a recessed carrier substrate and subjected to a second CVD diamond growth process.
    Type: Application
    Filed: November 8, 2017
    Publication date: March 19, 2020
    Applicant: ELEMENT SIX TECHNOLOGIES LIMITED
    Inventors: BEN LLEWELYN GREEN, ANDREW MICHAEL BENNETT, TIMOTHY PETER MOLLART, STEFAN IAN OLSSON ROBBIE
  • Patent number: 10443314
    Abstract: A method of forming an instrumented cutting element comprises forming a free-standing sintered diamond table having at least one chamber in the free-standing sintered diamond table, providing a doped diamond material within the at least one chamber, and attaching a substrate to the free-standing sintered diamond table to form an instrumented cutting element. The instrumented cutting element includes the doped diamond material disposed within the sintered diamond table on the substrate. A method of forming an earth-boring tool comprises attaching at least one instrumented cutting element to a body of an earth-boring tool. The at least one instrumented cutting element has a diamond table bonded to a substrate. The diamond table has at least one sensing element disposed at least partially within the diamond table. The at least one sensing element comprises a doped diamond material.
    Type: Grant
    Filed: March 10, 2017
    Date of Patent: October 15, 2019
    Assignees: Baker Hughes, a GE company, LLC, Element Six Limited
    Inventors: Danny E. Scott, Timothy Peter Mollart, John Robert Brandon
  • Patent number: 10407770
    Abstract: A polycrystalline chemical vapor deposited (CVD) diamond wafer comprising: a largest linear dimension equal to or greater than 125 mm; a thickness equal to or greater than 200 ?m; and one or both of the following characteristics measured at room temperature (nominally 298 K) over at least a central area of the polycrystalline CVD diamond wafer, said central area being circular, centered on a central point of the polycrystalline CVD diamond wafer, and having a diameter of at least 70% of the largest linear dimension of the polycrystalline CVD diamond wafer: an absorption coefficient ?0.2 cm?1 at 10.6 ?m; and a dielectric loss coefficient at 145 GHz, of tan ??2×10?4.
    Type: Grant
    Filed: January 17, 2018
    Date of Patent: September 10, 2019
    Assignee: ELEMENT SIX TECHNOLOGIES LIMITED
    Inventors: Paul Nicholas Inglis, John Robert Brandon, Joseph Michael Dodson, Timothy Peter Mollart
  • Patent number: 10290385
    Abstract: A boron doped synthetic diamond material which has the following characteristics: a solvent window meeting one or both of the following criteria as measured by sweeping a potential of the boron doped synthetic diamond material with respect to a saturated calomel reference electrode in a solution containing only deionized water and 0.1M KNO3 as a supporting electrolyte at pH 6: the solvent window extends over a potential range of at least 4.1 V wherein end points of the potential range for the solvent window are defined when anodic and cathodic current density measured at the boron doped synthetic diamond material reaches 38 mA cm?2; and the solvent window extends over a potential range of at least 3.3 V wherein end points of the potential range for the solvent window are defined when anodic and cathodic current density measured at the boron doped synthetic diamond material reaches 0.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: May 14, 2019
    Assignee: Element Six Limited
    Inventors: Eleni Bitziou, Laura Anne Hutton, Julie Victoria MacPherson, Mark Edward Newton, Patrick Robert Unwin, Nicola Louise Palmer, Timothy Peter Mollart, Joseph Michael Dodson
  • Publication number: 20180371629
    Abstract: An electrochemical cell for treating a fluid, the electrochemical cell comprising: at least two opposing electrodes defining a flow path for the fluid between the electrodes, where at least one of the electrodes is formed of electrically conductive diamond material; drive circuitry configured to apply a potential across the electrodes such that a current flows between the electrodes when the fluid is flowed through the flow path between the electrodes; and a housing in which the electrodes are disposed, the housing comprising pressure seals configured to containing the fluid within the fluid path and a support structure for supporting the electrodes, wherein the support structure and the pressure seals are configured such that the electrochemical cell has an operating pressure in a range 2 to 10 bar within which the electrodes are supported without fracturing and within which the fluid is contained within the flow path, wherein the electrodes are spaced apart by a distance in a range 0.
    Type: Application
    Filed: November 25, 2016
    Publication date: December 27, 2018
    Applicant: ELEMENT SIX TECHNOLOGIES LIMITED
    Inventors: JULIAN JAMES SARGOOD ELLIS, TIMOTHY PETER MOLLART, JOHN ROBERT BRANDON
  • Publication number: 20180320513
    Abstract: An earth-boring drilling tool comprises a cutting element. The cutting element comprises a substrate, a diamond table, and at least one sensing element formed from a doped diamond material disposed at least partially within the diamond table. A method for determining an at-bit measurement for an earth-boring drill bit comprises receiving an electrical signal generated within a doped diamond material disposed within a diamond table of a cutting element of the earth-boring drill bit, and correlating the electrical signal with at least one parameter during a drilling operation.
    Type: Application
    Filed: July 10, 2018
    Publication date: November 8, 2018
    Inventors: Danny E. Scott, Timothy Peter Mollart, John Robert Brandon
  • Patent number: 10024155
    Abstract: An earth-boring drilling tool comprises a cutting element. The cutting element comprises a substrate, a diamond table, and at least one sensing element formed from a doped diamond material disposed at least partially within the diamond table. A method for determining an at-bit measurement for an earth-boring drill bit comprises receiving an electrical signal generated within a doped diamond material disposed within a diamond table of a cutting element of the earth-boring drill bit, and correlating the electrical signal with at least one parameter during a drilling operation.
    Type: Grant
    Filed: March 6, 2017
    Date of Patent: July 17, 2018
    Assignee: Baker Hughes Incorporated
    Inventors: Danny E. Scott, Timothy Peter Mollart, John Robert Brandon
  • Publication number: 20180179626
    Abstract: A polycrystalline chemical vapour deposited (CVD) diamond wafer comprising: a largest linear dimension equal to or greater than 125 mm; a thickness equal to or greater than 200 ?m; and one or both of the following characteristics measured at room temperature (nominally 298 K) over at least a central area of the polycrystalline CVD diamond wafer, said central area being circular, centred on a central point of the polycrystalline CVD diamond wafer, and having a diameter of at least 70% of the largest linear dimension of the polycrystalline CVD diamond wafer: an absorption coefficient ?0.2 cm?1 at 10.6 ?m; and a dielectric loss coefficient at 145 GHz, of tan ??2×10?4.
    Type: Application
    Filed: January 17, 2018
    Publication date: June 28, 2018
    Inventors: Paul Nicholas Inglis, John Robert Brandon, Joseph Michael Dodson, Timothy Peter Mollart
  • Patent number: 9909209
    Abstract: A polycrystalline chemical vapor deposited (CVD) diamond wafer comprising: a largest linear dimension equal to or greater than 125 mm; a thickness equal to or greater than 200 ?m; and one or both of the following characteristics measured at room temperature (nominally 298 K) over at least a central area of the polycrystalline CVD diamond wafer, said central area being circular, centered on a central point of the polycrystalline CVD diamond wafer, and having a diameter of at least 70% of the largest linear dimension of the polycrystalline CVD diamond wafer: an absorption coefficient ?0.2 cm?1 at 10.6 ?m; and a dielectric loss coefficient at 145 GHz, of tan ??2×10?4.
    Type: Grant
    Filed: December 12, 2012
    Date of Patent: March 6, 2018
    Assignee: ELEMENT SIX TECHNOLOGIES LIMITED
    Inventors: Paul Nicholas Inglis, John Robert Brandon, Joseph Michael Dodson, Timothy Peter Mollart
  • Publication number: 20170322172
    Abstract: An electrochemical sensor comprising: a boron doped diamond electrode formed of boron doped diamond material; an array of non-diamond carbon sites disposed on a sensing surface of the boron doped diamond electrode; electrochemically active surface groups bonded to the non-diamond carbon sites for generating a redox peak associated with a target species which reacts with the electrochemically active surface groups bonded to the non-diamond carbon sites when a solution containing the target species is disposed in contact with the sensing surface in use; an electrical controller configured to scan the boron doped diamond electrode over a potential range to generate said redox peak; and a processor configured to give an electrochemical reading based on one or both of a position and an intensity of said redox peak.
    Type: Application
    Filed: November 20, 2015
    Publication date: November 9, 2017
    Inventors: Laura Anne Hutton, Maxim Bruckshaw Joseph, Roy Edward Patrick Meyler, Julie Victoria Macpherson, Timothy Peter Mollart, Zoe Ayers
  • Patent number: 9738970
    Abstract: The present disclosure relates to substrates for use in microwave plasma reactors. Certain substrates include a cylindrical disc of a carbide forming refractory metal having a flat growth surface on which CVD diamond is to be grown and a flat supporting surface opposed to said growth surface. The cylindrical disc may have a diameter of 80 mm or more. The growth surface may have a flatness variation no more than 100 mm The supporting surface may have a flatness variation no more than 100 mm.
    Type: Grant
    Filed: September 11, 2014
    Date of Patent: August 22, 2017
    Assignee: Element Six Limited
    Inventors: Carlton Nigel Dodge, Paul Nicolas Inglis, Geoffrey Alan Scarsbrook, Timothy Peter Mollart, Charles Simon James Pickles, Steven Edward Coe, Joseph Michael Dodson, Alexander Lamb Cullen, John Robert Brandon, Christopher John Howard Wort
  • Patent number: 9720133
    Abstract: A polycrystalline chemical vapour deposited (CVD) diamond wafer comprising: a largest linear dimension equal to or greater than 70 mm; a thickness equal to or greater than 1.3 mm; and one or both of the following characteristics measured at room temperature (nominally 298 K) over at least a central area of the polycrystalline CVD diamond wafer, said central area being circular, centred on a central point of the polycrystalline CVD diamond wafer, and having a diameter of at least 70% of the largest linear dimension of the polycrystalline CVD diamond wafer: an absorption coefficient ?0.2 cm?1 at 10.6 ?m; and a dielectric loss coefficient at 145 GHz, of tan ??2×10?4.
    Type: Grant
    Filed: December 13, 2012
    Date of Patent: August 1, 2017
    Assignee: Element Six Technologies Limited
    Inventors: Paul Nicholas Inglis, John Robert Brandon, Joseph Michael Dodson, Timothy Peter Mollart
  • Publication number: 20170183915
    Abstract: A method of forming an instrumented cutting element comprises forming a free-standing sintered diamond table having at least one chamber in the free-standing sintered diamond table, providing a doped diamond material within the at least one chamber, and attaching a substrate to the free-standing sintered diamond table to form an instrumented cutting element. The instrumented cutting element includes the doped diamond material disposed within the sintered diamond table on the substrate. A method of forming an earth-boring tool comprises attaching at least one instrumented cutting element to a body of an earth-boring tool. The at least one instrumented cutting element has a diamond table bonded to a substrate. The diamond table has at least one sensing element disposed at least partially within the diamond table. The at least one sensing element comprises a doped diamond material.
    Type: Application
    Filed: March 10, 2017
    Publication date: June 29, 2017
    Inventors: Danny E. Scott, Timothy Peter Mollart, John Robert Brandon
  • Publication number: 20170175520
    Abstract: An earth-boring drilling tool comprises a cutting element. The cutting element comprises a substrate, a diamond table, and at least one sensing element formed from a doped diamond material disposed at least partially within the diamond table. A method for determining an at-bit measurement for an earth-boring drill bit comprises receiving an electrical signal generated within a doped diamond material disposed within a diamond table of a cutting element of the earth-boring drill bit, and correlating the electrical signal with at least one parameter during a drilling operation.
    Type: Application
    Filed: March 6, 2017
    Publication date: June 22, 2017
    Inventors: Danny E. Scott, Timothy Peter Mollart, John Robert Brandon