Patents by Inventor Timothy R. Frazier

Timothy R. Frazier has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11933202
    Abstract: Systems and methods to extend a life of a component of a cylinder deactivation system are provided. A method includes generating, by a controller, an initial life factor for the component; initiating, by the controller, a CDA mode for an engine; determining, by the controller, an actual life factor for the component, the actual life factor determined by comparing a number of switching events of a cylinder in the CDA mode to a number of cycles of the cylinder in the CDA mode; comparing, by the controller, the actual life factor to the initial life factor; and modifying, by the controller based on the comparison, operation of the engine in the CDA mode to adjust the actual life factor.
    Type: Grant
    Filed: July 21, 2022
    Date of Patent: March 19, 2024
    Assignees: Cummins Inc., Tula Technology, Inc.
    Inventors: Timothy R. Frazier, J. Steven Kolhouse, Steven J. Small, Louis Joseph Serrano
  • Publication number: 20230382379
    Abstract: A method of controlling one or more vehicles of a platoon of vehicles includes determining in response to information of forward route conditions of the platoon an opportunity to mitigate braking losses, performing regenerative braking in response to a deceleration output of an cooperative adaptive cruise control (CACC) system, adjusting an inter-vehicle distance of the CACC system, and performing at least one of the regenerative braking and the adjusting the inter-vehicle distance.
    Type: Application
    Filed: May 30, 2023
    Publication date: November 30, 2023
    Inventors: Hoseinali Borhan, Timothy R. Frazier
  • Publication number: 20220364486
    Abstract: Systems and methods to extend a life of a component of a cylinder deactivation system are provided. A method includes generating, by a controller, an initial life factor for the component; initiating, by the controller, a CDA mode for an engine; determining, by the controller, an actual life factor for the component, the actual life factor determined by comparing a number of switching events of a cylinder in the CDA mode to a number of cycles of the cylinder in the CDA mode; comparing, by the controller, the actual life factor to the initial life factor; and modifying, by the controller based on the comparison, operation of the engine in the CDA mode to adjust the actual life factor.
    Type: Application
    Filed: July 21, 2022
    Publication date: November 17, 2022
    Applicants: Cummins Inc., Tula Technology, Inc.
    Inventors: Timothy R. Frazier, J. Steven Kolhouse, Steven J. Small, Louis Joseph Serrano
  • Publication number: 20190308624
    Abstract: Adaptive cruise control apparatuses, methods, and system are disclosed. In one embodiment, an electronic control system of a following vehicle detects a preceding vehicle, the following vehicle is controlled to follow the preceding vehicle at an initial following distance, the initial following distance is perturbated, and the following distance is modified if the perturbated following distance offers a fuel or energy benefit.
    Type: Application
    Filed: April 3, 2019
    Publication date: October 10, 2019
    Inventors: Hoseinali Borhan, Timothy R. Frazier
  • Patent number: 9835099
    Abstract: This disclosure provides a system and method for controlling internal combustion engine system to reduce operation variations among plural engines. The system and method utilizes single-input-single-output (SISO) control in which a single operating parameter lever is selected from among exhaust gas recirculation (EGR) fraction and charge air mass flow (MCF), and a stored reference value associated with the selected lever is adjusted for an operating point in accordance with a difference between a measured emissions characteristic and a pre-calibrated reference value of the emissions characteristic for that operating point. Adjusting the selected operating parameter lever towards the theoretical pre-calibrated reference value of the operating parameter lever for each of plural operating points can reduce engine-to-engine variations in engine out emissions.
    Type: Grant
    Filed: November 24, 2015
    Date of Patent: December 5, 2017
    Assignee: Cummins Inc.
    Inventors: Yongjie Zhu, Vivek A. Sujan, Govindarajan Kothandaraman, Timothy R. Frazier
  • Patent number: 9724685
    Abstract: There is disclosed method and systems for charging a depleted or spent solid storage media with gaseous ammonia.
    Type: Grant
    Filed: May 28, 2014
    Date of Patent: August 8, 2017
    Assignee: Cummins Inc.
    Inventors: Aleksey Yezerets, Neal W. Currier, Timothy R. Frazier, Andrew W. Osburn, Krishna Kamasamudram
  • Patent number: 9683507
    Abstract: A system includes an internal combustion ignition engine with an exhaust gas flow, a particulate filter in the exhaust gas flow, a NOx reduction catalyst in the exhaust gas flow downstream of the particulate filter, a first oxygen sensor coupled to the exhaust gas flow downstream of the NOx reduction catalyst, and a second oxygen sensor coupled to the exhaust gas flow between the particulate filter and the NOx reduction catalyst. A controller includes an exhaust conditions module that interprets a first oxygen signal from the first oxygen sensor and a second oxygen signal from the second oxygen sensor and a combustion control module that commands a high engine-out air-fuel ratio when the first oxygen signal indicates a low oxygen content and commands a low engine-out air-fuel ratio when the first oxygen signal indicates a high oxygen content.
    Type: Grant
    Filed: April 28, 2014
    Date of Patent: June 20, 2017
    Assignee: Cummins Inc.
    Inventors: Aleksey Yezerets, Timothy R. Frazier, Marten H. Dane, Samuel C. Geckler, Govindarajan Kothandaraman
  • Patent number: 9624857
    Abstract: This disclosure provides a method and system for determining recommendations for vehicle operation that reduce soot production in view of a diesel particulate filter (DPF) of an exhaust aftertreatment system. Recommendations generated can reduce excessive particulate matter (PM) production during transient engine events and provide for operating conditions favorable for passive regeneration. In this way, less frequent active regeneration of the DPF is needed and/or more opportunities are provided for passive regeneration. The system and method can utilize location and terrain information to anticipate and project a window of operation in view of reducing soot production and soot loading of the DPF, or provide the operator with instruction when such opportunities are present or will soon be encountered.
    Type: Grant
    Filed: October 21, 2015
    Date of Patent: April 18, 2017
    Assignees: CUMMINS INTELLECTUAL PROPERTY, INC., PACCAR, INC., EATON CORPORATION
    Inventors: Vivek A. Sujan, Timothy R. Frazier
  • Patent number: 9528432
    Abstract: A system and method are provided for controlling an air handling system for an internal combustion engine including a turbocharger having a variable geometry turbine fluidly coupled to an exhaust manifold of the engine and a compressor fluidly coupled to an intake manifold of the engine, and an electric motor coupled to a rotatable shaft connected between the compressor and the variable geometry turbine. A target torque required to drive the compressor to achieve target compressor operating parameters is determined, a maximum available torque that can be supplied by the variable geometry turbine in response to a target exhaust gas flow through the variable geometry turbine is determined, and the electric motor is enabled to supply supplemental torque to the rotatable shaft if the target torque is greater than the maximum available torque.
    Type: Grant
    Filed: September 25, 2011
    Date of Patent: December 27, 2016
    Assignee: Cummins, Inc.
    Inventors: John N. Chi, John M. Mulloy, Sriram S. Popuri, Timothy R. Frazier, Martin T. Books, Divakar Rajamohan, Indranil Brahma
  • Publication number: 20160084180
    Abstract: This disclosure provides a system and method for controlling internal combustion engine system to reduce operation variations among plural engines. The system and method utilizes single-input-single-output (SISO) control in which a single operating parameter lever is selected from among exhaust gas recirculation (EGR) fraction and charge air mass flow (MCF), and a stored reference value associated with the selected lever is adjusted for an operating point in accordance with a difference between a measured emissions characteristic and a pre-calibrated reference value of the emissions characteristic for that operating point. Adjusting the selected operating parameter lever towards the theoretical pre-calibrated reference value of the operating parameter lever for each of plural operating points can reduce engine-to-engine variations in engine out emissions.
    Type: Application
    Filed: November 24, 2015
    Publication date: March 24, 2016
    Applicant: Cummins Inc.
    Inventors: Yongjie ZHU, Vivek A. SUJAN, Govindarajan KOTHANDARAMAN, Timothy R. FRAZIER
  • Publication number: 20160040615
    Abstract: This disclosure provides a method and system for determining recommendations for vehicle operation that reduce soot production in view of a diesel particulate filter (DPF) of an exhaust aftertreatment system. Recommendations generated can reduce excessive particulate matter (PM) production during transient engine events and provide for operating conditions favorable for passive regeneration. In this way, less frequent active regeneration of the DPF is needed and/or more opportunities are provided for passive regeneration. The system and method can utilize location and terrain information to anticipate and project a window of operation in view of reducing soot production and soot loading of the DPF, or provide the operator with instruction when such opportunities are present or will soon be encountered.
    Type: Application
    Filed: October 21, 2015
    Publication date: February 11, 2016
    Applicants: CUMMINS INTELLECTUAL PROPERTY, INC., PACCAR, INC., EATON CORPORATION
    Inventors: Vivek A. SUJAN, Timothy R. FRAZIER
  • Patent number: 9228511
    Abstract: This disclosure provides a system and method for controlling internal combustion engine system to reduce operation variations among plural engines. The system and method utilizes single-input-single-output (SISO) control in which a single operating parameter lever is selected from among exhaust gas recirculation (EGR) fraction and charge air mass flow (MCF), and a stored reference value associated with the selected lever is adjusted for an operating point in accordance with a difference between a measured emissions characteristic and a pre-calibrated reference value of the emissions characteristic for that operating point. Adjusting the selected operating parameter lever towards the theoretical pre-calibrated reference value of the operating parameter lever for each of plural operating points can reduce engine-to-engine variations in engine out emissions.
    Type: Grant
    Filed: October 19, 2012
    Date of Patent: January 5, 2016
    Assignee: CUMMINS INC.
    Inventors: Yongjie Zhu, Vivek J. Sujan, Govindarajan Kothandaraman, Timothy R. Frazier
  • Patent number: 9206756
    Abstract: A method and related apparatuses and systems for operating an engine that provides a high level of NOX to regenerate particulate matter deposited on a particulate filter. The method includes producing NOX in response to a NOX excess capacity value of a NOX reduction device. The method optionally includes determining that particulate matter exceeds an enhanced passive regeneration threshold amount before providing a high level of NOX. The method optionally includes producing a higher particulate emissions output value to warm the engine exhaust to bring an aftertreatment catalyst to an optimal operating temperature. The method can be implemented with a closed loop feedback controller, which may be configured to reduce particulate matter variation.
    Type: Grant
    Filed: March 31, 2014
    Date of Patent: December 8, 2015
    Assignee: Cummins Inc.
    Inventors: Yongjie Zhu, Vivek A. Sujan, Timothy R. Frazier
  • Patent number: 9194318
    Abstract: This disclosure provides a method and system for determining recommendations for vehicle operation that reduce soot production in view of a diesel particulate filter (DPF) of an exhaust aftertreatment system. Recommendations generated can reduce excessive particulate matter (PM) production during transient engine events and provide for operating conditions favorable for passive regeneration. In this way, less frequent active regeneration of the DPF is needed and/or more opportunities are provided for passive regeneration. The system and method can utilize location and terrain information to anticipate and project a window of operation in view of reducing soot production and soot loading of the DPF, or provide the operator with instruction when such opportunities are present or will soon be encountered.
    Type: Grant
    Filed: February 28, 2012
    Date of Patent: November 24, 2015
    Assignee: CUMMINS INTELLECTUAL PROPERTY, INC.
    Inventors: Vivek A. Sujan, Timothy R. Frazier
  • Patent number: 9181905
    Abstract: A system controlling an air handling system for an internal combustion engine. An EGR valve in-line with an EGR passageway fluidly coupled between exhaust and intake manifolds of the engine is controllable between fully closed open positions to control a flow rate of exhaust gas through the EGR passageway. A control circuit determines a pump enable value as a function of at least one of a target engine speed and a total fueling target, determines a maximum achievable flow rate of recirculated exhaust gas through the EGR passageway with the EGR valve in the fully open position, and activates an electric gas pump to increase the flow rate of exhaust gas through the EGR passageway if the pump enable value exceeds a threshold pump enable value and a target flow rate of recirculated exhaust gas through the EGR passageway is less than the maximum achievable flow rate.
    Type: Grant
    Filed: September 25, 2011
    Date of Patent: November 10, 2015
    Assignee: Cummins Inc.
    Inventors: John N. Chi, John M. Mulloy, Sriram S. Popuri, Timothy R. Frazier, Martin T. Books, Divakar Rajamohan, Indranil Brahma
  • Publication number: 20150275803
    Abstract: A method and related apparatuses and systems for operating an engine that provides a high level of NOX to regenerate particulate matter deposited on a particulate filter. The method includes producing NOX in response to a NOX excess capacity value of a NOX reduction device. The method optionally includes determining that particulate matter exceeds an enhanced passive regeneration threshold amount before providing a high level of NOX. The method optionally includes producing a higher particulate emissions output value to warm the engine exhaust to bring an aftertreatment catalyst to an optimal operating temperature. The method can be implemented with a closed loop feedback controller, which may be configured to reduce particulate matter variation.
    Type: Application
    Filed: March 31, 2014
    Publication date: October 1, 2015
    Inventors: Yongjie Zhu, Vivek A. Sujan, Timothy R. Frazier
  • Patent number: 8881505
    Abstract: According to one embodiment, an apparatus includes an electronic controller (15) for an internal combustion engine (12) of a motor vehicle. The electronic controller includes a location detection module (32) configured to identify a location of the motor vehicle by a global positioning system (GPS) device (18). Also, the electronic controller includes a driving condition prediction module (34) configured to determine a direction of travel and access geographic information data for a path to be traveled by the motor vehicle. The electronic controller also has a simulation module (36) configured to simulate engine performance including effects from parasitic loads. Still further, the electronic controller includes a parasitic load control module (38) configured to adjust the timing for one or more of a regeneration process for an exhaust filter and at least one other parasitic load in order to maintain engine performance at or above a predetermined threshold.
    Type: Grant
    Filed: August 13, 2010
    Date of Patent: November 11, 2014
    Assignee: Cummins IP, Inc.
    Inventor: Timothy R. Frazier
  • Patent number: 8886422
    Abstract: This disclosure provides a system and method for determining cylinder deactivation in a vehicle engine to optimize fuel consumption while providing the desired or demanded power. In one aspect, data indicative of terrain variation is utilized in determining a vehicle target operating state. An optimal active cylinder distribution and corresponding fueling is determined from a recommendation from a supervisory agent monitoring the operating state of the vehicle of a subset of the total number of cylinders, and a determination as to which number of cylinders provides the optimal fuel consumption. Once the optimal cylinder number is determined, a transmission gear shift recommendation is provided in view of the determined active cylinder distribution and target operating state.
    Type: Grant
    Filed: February 28, 2012
    Date of Patent: November 11, 2014
    Assignees: Cummins Iintellectual Property, Inc., Paccar, Inc., Eaton Corporation
    Inventors: Vivek A. Sujan, Timothy R. Frazier, Kenneth Follen, Suk-Min Moon
  • Publication number: 20140271389
    Abstract: There is disclosed method and systems for charging a depleted or spent solid storage media with gaseous ammonia.
    Type: Application
    Filed: May 28, 2014
    Publication date: September 18, 2014
    Applicant: Cummins Inc.
    Inventors: Aleksey Yezerets, Neal W. Currier, Timothy R. Frazier, Andrew S. Osburn, Krishna Kamasamudram
  • Patent number: 8813690
    Abstract: A technique for engine control to account for fuel effects including providing an internal combustion engine and a controller to regulate operation thereof, the engine being operable to combust a fuel to produce an exhaust gas; establishing a plurality of fuel property inputs; establishing a plurality of engine performance inputs; generating engine control information as a function of the fuel property inputs and the engine performance inputs; and accessing the engine control information with the controller to regulate at least one engine operating parameter.
    Type: Grant
    Filed: November 1, 2010
    Date of Patent: August 26, 2014
    Assignee: Cummins Inc.
    Inventors: Shankar Kumar, Timothy R. Frazier, Donald W. Stanton, Yi Xu, Bruce G. Bunting, Leslie R. Wolf