Patents by Inventor Timothy R. Mrock

Timothy R. Mrock has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8435426
    Abstract: The electrical contact enhancing coating is a composition that includes finely divided precious metal particles mixed with a dielectric carrier to form a coating. The dielectric carrier is a vegetable oil (preferably soybean-based) carrier of the type used as a dielectric coolant in power transformers, and is preferably high in antioxidant content. In a first embodiment, the precious metal is 100% silver having an average particle size of about 5-10 ?m. In a second embodiment, the precious metal is about 65-85% silver and 15-35% gold (average particle size 0.5-1.8 ?m), by weight. In a third embodiment, the precious metal is about 65-85% silver, 12.5-30% gold, and 2.5-5% palladium (average particle size 0.5-1.8 ?m), by weight. The precious metals may be cryogenically treated prior to mixing with the dielectric carrier.
    Type: Grant
    Filed: March 22, 2011
    Date of Patent: May 7, 2013
    Inventors: Brian K. Kyle, Timothy R. Mrock
  • Publication number: 20110168958
    Abstract: The electrical contact enhancing coating is a composition that includes finely divided precious metal particles mixed with a dielectric carrier to form a coating. The dielectric carrier is a vegetable oil (preferably soybean-based) carrier of the type used as a dielectric coolant in power transformers, and is preferably high in antioxidant content. In a first embodiment, the precious metal is 100% silver having an average particle size of about 5-10 ?m. In a second embodiment, the precious metal is about 65-85% silver and 15-35% gold (average particle size 0.5-1.8 ?m), by weight. In a third embodiment, the precious metal is about 65-85% silver, 12.5-30% gold, and 2.5-5% palladium (average particle size 0.5-1.8 ?m), by weight. The precious metals may be cryogenically treated prior to mixing with the dielectric carrier.
    Type: Application
    Filed: March 22, 2011
    Publication date: July 14, 2011
    Inventors: BRIAN K. KYLE, Timothy R. Mrock
  • Patent number: 7910026
    Abstract: The electrical contact enhancing coating is a composition that includes finely divided precious metal particles mixed with a dielectric carrier to form a coating. The dielectric carrier is a vegetable oil (preferably soybean-based) carrier of the type used as a dielectric coolant in power transformers, and is preferably high in antioxidant content. In a first embodiment, the precious metal is 100% silver having an average particle size of about 5-10 ?m. In a second embodiment, the precious metal is about 65-85% silver and 15-35% gold (average particle size 0.5-1.8 ?m), by weight. In a third embodiment, the precious metal is about 65-85% silver, 12.5-30% gold, and 2.5-5% palladium (average particle size 0.5-1.8 ?m), by weight. The precious metals may be cryogenically treated prior to mixing with the dielectric carrier.
    Type: Grant
    Filed: December 20, 2006
    Date of Patent: March 22, 2011
    Inventors: Brian K. Kyle, Timothy R. Mrock
  • Publication number: 20080152791
    Abstract: The electrical contact enhancing coating is a composition that includes finely divided precious metal particles mixed with a dielectric carrier to form a coating. The dielectric carrier is a vegetable oil (preferably soybean-based) carrier of the type used as a dielectric coolant in power transformers, and is preferably high in antioxidant content. In a first embodiment, the precious metal is 100% silver having an average particle size of about 5-10 ?m. In a second embodiment, the precious metal is about 65-85% silver and 15-35% gold (average particle size 0.5-1.8 ?m), by weight. In a third embodiment, the precious metal is about 65-85% silver, 12.5-30% gold, and 2.5-5% palladium (average particle size 0.5-1.8 ?m), by weight. The precious metals may be cryogenically treated prior to mixing with the dielectric carrier.
    Type: Application
    Filed: December 20, 2006
    Publication date: June 26, 2008
    Inventors: Brian K. Kyle, Timothy R. Mrock