Patents by Inventor Timothy R. Myers

Timothy R. Myers has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9044159
    Abstract: Changes in the volume of residual limbs on which prosthetic sockets are worn can be measured based on bioimpedance measurements along one or more segments of the limb. A current at an appropriate frequency (e.g., in the range from 1 kHz to 1 MHz) is injected at two current electrodes that contact the skin of the residual limb. The voltage at the voltage electrodes disposed between the current electrodes is measured and using an appropriate model, the change in the segmented volume of the limb can be determined during periods of different activity and at different times during the day. This information can be used for assessing the fit of the socket and can also provide a feedback signal for automatically controlling volume management devices, to ensure a more comfortable fit when the volume of the limb is changing.
    Type: Grant
    Filed: January 27, 2012
    Date of Patent: June 2, 2015
    Assignee: University of Washington
    Inventors: Joan E. Sanders, Timothy R. Myers, Daniel S. Harrison, Katheryn J. Allyn, Ellen L. Lee, Daniel C. Abrahamson, Kirk Beach, Santosh Zachariah
  • Patent number: 8423167
    Abstract: For use in connection with evaluating prosthetic sockets (and other objects) designed and fabricated with computer aided design and manufacturing software, the shape of a socket is accurately scanned and digitized. The scanned data are then compared to either an electronic shape data file, or to the shape of another socket, a positive model of a residual limb (or socket), or a residual limb. Differences detected during the comparison can then be applied to revise the design or fabrication of the socket, to more accurately achieve a desired shape that properly fits the residual limb of a patient and can be used to solve the inverse problem by correcting for observed errors of a specific fabricator before a socket is produced. The digitizing process is implemented using a stylus ball that contacts a surface of the socket to produce data indicating the three-dimensional shape of the socket.
    Type: Grant
    Filed: July 22, 2009
    Date of Patent: April 16, 2013
    Assignee: University of Washington
    Inventors: Joan E. Sanders, Michael R. Severance, Timothy R. Myers, George Turkiyyah, Elizabeth A. Sorenson, Ellen L. Lee
  • Publication number: 20120143077
    Abstract: Changes in the volume of residual limbs on which prosthetic sockets are worn can be measured based on bioimpedance measurements along one or more segments of the limb. A current at an appropriate frequency (e.g., in the range from 1 kHz to 1 MHz) is injected at two current electrodes that contact the skin of the residual limb. The voltage at the voltage electrodes disposed between the current electrodes is measured and using an appropriate model, the change in the segmented volume of the limb can be determined during periods of different activity and at different times during the day. This information can be used for assessing the fit of the socket and can also provide a feedback signal for automatically controlling volume management devices, to ensure a more comfortable fit when the volume of the limb is changing.
    Type: Application
    Filed: January 27, 2012
    Publication date: June 7, 2012
    Applicant: UNIVERSITY OF WASHINGTON
    Inventors: Joan E. Sanders, Timothy R. Myers, Daniel S. Harrison, Katheryn J. Allyn, Ellen L. Lee, Daniel C. Abrahamson, Kirk Beach, Santosh Zachariah
  • Patent number: 8142369
    Abstract: Changes in the volume of residual limbs on which prosthetic sockets are worn can be measured based on bioimpedance measurements along one or more segments of the limb. A current at an appropriate frequency (e.g., in the range from 1 kHz to 1 MHz) is injected at two current electrodes that contact the skin of the residual limb. The voltage at the voltage electrodes disposed between the current electrodes is measured and using an appropriate model, the change in the segmented volume of the limb can be determined during periods of different activity and at different times during the day. This information can be used for assessing the fit of the socket and can also provide a feedback signal for automatically controlling volume management devices, to ensure a more comfortable fit when the volume of the limb is changing.
    Type: Grant
    Filed: July 27, 2009
    Date of Patent: March 27, 2012
    Assignee: University of Washington
    Inventors: Joan E. Sanders, Timothy R. Myers, Daniel S. Harrison, Katheryn J. Allyn, Ellen L. Lee, Daniel C. Abrahamson, Kirk Beach, Santosh Zachariah
  • Publication number: 20100036455
    Abstract: Changes in the volume of residual limbs on which prosthetic sockets are worn can be measured based on bioimpedance measurements along one or more segments of the limb. A current at an appropriate frequency (e.g., in the range from 1 kHz to 1 MHz) is injected at two current electrodes that contact the skin of the residual limb. The voltage at the voltage electrodes disposed between the current electrodes is measured and using an appropriate model, the change in the segmented volume of the limb can be determined during periods of different activity and at different times during the day. This information can be used for assessing the fit of the socket and can also provide a feedback signal for automatically controlling volume management devices, to ensure a more comfortable fit when the volume of the limb is changing.
    Type: Application
    Filed: July 27, 2009
    Publication date: February 11, 2010
    Applicant: University of Washington
    Inventors: Joan E. Sanders, Timothy R. Myers, Daniel S. Harrison, Katheryn J. Allyn, Ellen L. Lee, Daniel C. Abrahamson, Kirk Beach, Santosh Zachariah
  • Publication number: 20100023149
    Abstract: For use in connection with evaluating prosthetic sockets (and other objects) designed and fabricated with computer aided design and manufacturing software, the shape of a socket is accurately scanned and digitized. The scanned data are then compared to either an electronic shape data file, or to the shape of another socket, a positive model of a residual limb (or socket), or a residual limb. Differences detected during the comparison can then be applied to revise the design or fabrication of the socket, to more accurately achieve a desired shape that properly fits the residual limb of a patient and can be used to solve the inverse problem by correcting for observed errors of a specific fabricator before a socket is produced. The digitizing process is implemented using a stylus ball that contacts a surface of the socket to produce data indicating the three-dimensional shape of the socket.
    Type: Application
    Filed: July 22, 2009
    Publication date: January 28, 2010
    Applicant: University of Washington
    Inventors: Joan E. Sanders, Michael R. Severance, Timothy R. Myers, George Turkiyyah, Elizabeth A. Sorenson, Ellen L. Lee
  • Patent number: 6547736
    Abstract: A pulse Doppler ultrasound system and associated methods are described for monitoring blood flow and detecting emboli. A graphical information display includes simultaneously displayed depth-mode and spectrogram displays. The depth-mode display indicates the various positions along the ultrasound beam axis at which blood flow is detected. These positions are indicated as one or more colored regions, with the color indicating direction of blood flow and varying in intensity as a function of detected Doppler ultrasound signal amplitude or detected blood flow velocity. The depth-mode display also includes a pointer whose position may be selected by a user. The spectrogram displayed corresponds to the location identified by the pointer. Embolus detection and characterization are also provided.
    Type: Grant
    Filed: May 18, 2000
    Date of Patent: April 15, 2003
    Assignee: Spentech, Inc.
    Inventors: Mark A. Moehring, Timothy R. Myers
  • Patent number: 6524249
    Abstract: A pulse Doppler ultrasound system and associated methods are described for monitoring blood flow and detecting emboli. A graphical information display includes simultaneously displayed depth-mode and spectrogram displays. The depth-mode display indicates the various positions along the ultrasound beam axis at which blood flow is detected. These positions are indicated as one or more colored regions, with the color indicating direction of blood flow and varying in intensity as a function of detected Doppler ultrasound signal amplitude or detected blood flow velocity. The depth-mode display also includes a pointer whose position may be selected by a user. The spectrogram displayed corresponds to the location identified by the pointer. Embolus detection is also provided.
    Type: Grant
    Filed: December 6, 2000
    Date of Patent: February 25, 2003
    Assignee: Spentech, Inc.
    Inventors: Mark A. Moehring, Timothy R. Myers
  • Publication number: 20020091319
    Abstract: A pulse Doppler ultrasound system and associated methods are described for monitoring blood flow and detecting emboli. A graphical information display includes simultaneously displayed depth-mode and spectrogram displays. The depth-mode display indicates the various positions along the ultrasound beam axis at which blood flow is detected. These positions are indicated as one or more colored regions, with the color indicating direction of blood flow and varying in intensity as a function of detected Doppler ultrasound signal amplitude or detected blood flow velocity. The depth-mode display also includes a pointer whose position may be selected by a user. The spectrogram displayed corresponds to the location identified by the pointer. Embolus detection is also provided.
    Type: Application
    Filed: December 6, 2000
    Publication date: July 11, 2002
    Inventors: Mark A. Moehring, Timothy R. Myers
  • Publication number: 20010044756
    Abstract: A method of dynamically resolving disputes between an employee using a payroll deduction plan to pay for purchases and an external system processing the payroll deduction plan, the method comprising the steps of (a) determining if the dispute relates to a product or service purchased from a merchant or to an error in the processed employee payroll deduction; (b) if the dispute relates to an error in the processed employee payroll deduction, determining if the error is related to a number of deduction periods or the employee's pay cycle frequency; (c) if the error relates to an error in the number of deduction periods, the external system corrects the number of deduction periods and determines if a next payroll deduction period is in progress of being processed; (d) if the external system determines that a deduction period is in progress, the external system allows the next deduction to occur and determines if the deduction amount is too high or too low; (e) if the deduction amount is too low, the employee pay
    Type: Application
    Filed: July 18, 2001
    Publication date: November 22, 2001
    Applicant: e-Duction, Inc.
    Inventors: Kirk E. Watkins, Timothy R. Myers
  • Patent number: 6053278
    Abstract: An elevated occupant supporting stand convertible to a wheeled cart capable of multiple uses and purposes. The stand includes a framework having a seat, footrest, safety railing and a structure for engaging a vertical support member such as a tree trunk, pole or the like. A sectional ladder is detachably connected to the framework and a stabilizer bar extends between a lower portion of the ladder and the support member to enable an occupant to climb the ladder to gain access to the framework, seat and related structure and enable an occupant to descend from the stand to ground surface. When used as a cart, an axle fixedly secured to the framework is provided with supporting wheels and the framework and disassembled ladder sections form a structure for supporting various items to be moved to and from a site of use of the stand with the ladder sections being secured together and forming projecting handles for manipulating the wheeled cart.
    Type: Grant
    Filed: September 22, 1998
    Date of Patent: April 25, 2000
    Inventor: Timothy R. Myers