Patents by Inventor Timothy W. Anderson

Timothy W. Anderson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10048449
    Abstract: A terminus for a fiber optic cable includes a ferrule. In one embodiment, an optical fiber of the cable passes through a central bore of the ferrule and is attached to a lens seated in a conical or cylindrical seat formed in an end surface of the ferrule by an epoxy. In a second embodiment, an optical fiber of the cable passes through the central bore of the ferrule. Next, a cap sleeve with a lens therein is slid over and attached to the ferrule such that the lens abuts or is attached to the optical fiber. In either embodiment, an inspection slot may optionally be formed in the ferrule and/or the cap sleeve to allow a technician to inspect the state of the attachment and/or abutment and/or spacing of the optical fiber and the lens.
    Type: Grant
    Filed: March 18, 2017
    Date of Patent: August 14, 2018
    Assignee: CommScope, Inc. of North Carolina
    Inventors: Jeffrey D. Nielson, Gary F. Gibbs, Matthew Cruz, Timothy W. Anderson
  • Patent number: 10012805
    Abstract: A connectorized fiber optic cabling assembly includes a loose tube fiber optic cable and a connector assembly. The cable has a termination end and includes: an optical fiber bundle including a plurality of optical fibers; at least one strength member; and a jacket surrounding the optical fiber bundle and the at least one strength member. The connector assembly includes a rigid portion and defines a fiber passage. The connector assembly is mounted on the termination end of the cable such that the optical fiber bundle extends through at least a portion of the fiber passage. The plurality of optical fibers of the optical fiber bundle have a ribbonized configuration in the rigid portion of the connector assembly and a loose, non-ribbonized configuration outside the rigid portion.
    Type: Grant
    Filed: June 5, 2017
    Date of Patent: July 3, 2018
    Assignee: COMMSCOPE, INC. OF NORTH CAROLINA
    Inventors: Timothy W. Anderson, Richard L. Case
  • Publication number: 20170343746
    Abstract: A connectorized fiber optic cabling assembly includes a loose tube fiber optic cable and a connector assembly. The cable has a termination end and includes: an optical fiber bundle including a plurality of optical fibers; at least one strength member, and a jacket surrounding the optical fiber bundle and the at least one strength member. The connector assembly includes a rigid portion and defines a fiber passage. The connector assembly is mounted on the termination end of the cable such that the optical fiber bundle extends through at least a portion of the fiber passage. The plurality of optical fibers of the optical fiber bundle have a ribbonized configuration in the rigid portion of the connector assembly and a loose, non-ribbonized configuration outside the rigid portion. The plurality of optical fibers undergo a transition from the ribbonized configuration to the loose, non-ribbonized configuration in the rigid portion of the connector assembly.
    Type: Application
    Filed: June 5, 2017
    Publication date: November 30, 2017
    Applicant: CommScope, Inc. of North Carolina
    Inventors: Timothy W. Anderson, Richard L. Case
  • Publication number: 20170235059
    Abstract: A method and system for affixing multi-core fiber (MCF) within a ferrule includes a UV light source and a light guide. MCFs are placed into epoxy filled holders, e.g., channels or v-grooves, of a ferrule. A first MCF in a first holder is clocked to orient its cores to a desired position. The light source is activated, and the light from the light guide is launched into an outer layer of the first MCF, like the cladding layer or a dedicated light carrying layer. The light in the outer layer will stay in the outer layer until it reaches the portion of the first MCF in contact with the epoxy, even if the light is launched from the far end of the fiber remote from the holder. At the holder, the light will leak out due to the similarity in the index of refraction. The leaking light will at least partially cure the epoxy to affix the first MCF within the first holder. The process may then be repeated for the remaining MCFs, so that each MCF may be clocked and affixed selectively rather than collectively.
    Type: Application
    Filed: April 28, 2017
    Publication date: August 17, 2017
    Inventors: Timothy W. ANDERSON, Jeffrey D. Nielson
  • Publication number: 20170192179
    Abstract: A terminus for a fiber optic cable includes a ferrule. In one embodiment, an optical fiber of the cable passes through a central bore of the ferrule and is attached to a lens seated in a conical or cylindrical seat formed in an end surface of the ferrule by an epoxy. In a second embodiment, an optical fiber of the cable passes through the central bore of the ferrule. Next, a cap sleeve with a lens therein is slid over and attached to the ferrule such that the lens abuts or is attached to the optical fiber. In either embodiment, an inspection slot may optionally be formed in the ferrule and/or the cap sleeve to allow a technician to inspect the state of the attachment and/or abutment and/or spacing of the optical fiber and the lens.
    Type: Application
    Filed: March 18, 2017
    Publication date: July 6, 2017
    Inventors: Jeffrey D. NIELSON, Gary F. GIBBS, Matthew CRUZ, Timothy W. ANDERSON
  • Patent number: 9690057
    Abstract: A connectorized fiber optic cabling assembly includes a loose tube fiber optic cable and a connector assembly. The cable has a termination end and includes: an optical fiber bundle including a plurality of optical fibers; at least one strength member; and a jacket surrounding the optical fiber bundle and the at least one strength member. The connector assembly includes a rigid portion and defines a fiber passage. The connector assembly is mounted on the termination end of the cable such that the optical fiber bundle extends through at least a portion of the fiber passage. The plurality of optical fibers of the optical fiber bundle have a ribbonized configuration in the rigid portion of the connector assembly and a loose, non-ribbonized configuration outside the rigid portion.
    Type: Grant
    Filed: December 4, 2015
    Date of Patent: June 27, 2017
    Assignee: CommScope, Inc. of North Carolina
    Inventors: Timothy W. Anderson, Richard L. Case
  • Patent number: 9664863
    Abstract: A method and system for affixing multi-core fiber (MCF) within a ferrule includes a UV light source and a light guide. MCFs are placed into epoxy filled holders, e.g., channels or v-grooves, of a ferrule. A first MCF in a first holder is clocked to orient its cores to a desired position. The light source is activated, and the light from the light guide is launched into a cladding layer of the first MCF. The light in the cladding layer will stay in the cladding layer until it reaches the portion of the first MCF in contact with the epoxy, where the light will leak out due to the similarity in the index of refraction. The leaking light will at least partially cure the epoxy to affix the first MCF within the first holder. The process may then be repeated for the remaining MCFs, so that each MCF may be clocked and affixed selectively rather than collectively.
    Type: Grant
    Filed: January 8, 2014
    Date of Patent: May 30, 2017
    Assignee: CommScope, Inc. of North Carolina
    Inventors: Timothy W. Anderson, Jeffrey D. Nielson
  • Patent number: 9599771
    Abstract: A terminus for a fiber optic cable includes a ferrule. In one embodiment, an optical fiber of the cable passes through a central bore of the ferrule and is attached to a lens seated in a conical or cylindrical seat formed in an end surface of the ferrule by an epoxy. In a second embodiment, an optical fiber of the cable passes through the central bore of the ferrule. Next, a cap sleeve with a lens therein is slid over and attached to the ferrule such that the lens abuts or is attached to the optical fiber. In either embodiment, an inspection slot may optionally be formed in the ferrule and/or the cap sleeve to allow a technician to inspect the state of the attachment and/or abutment and/or spacing of the optical fiber and the lens.
    Type: Grant
    Filed: December 10, 2015
    Date of Patent: March 21, 2017
    Assignee: CommScope, Inc. of North Carolina
    Inventors: Jeffrey D. Nielson, Gary Gibbs, Matthew Cruz, Timothy W. Anderson
  • Publication number: 20160147021
    Abstract: A terminus for a fiber optic cable includes a ferrule. In one embodiment, an optical fiber of the cable passes through a central bore of the ferrule and is attached to a lens seated in a conical or cylindrical seat formed in an end surface of the ferrule by an epoxy. In a second embodiment, an optical fiber of the cable passes through the central bore of the ferrule. Next, a cap sleeve with a lens therein is slid over and attached to the ferrule such that the lens abuts or is attached to the optical fiber. In either embodiment, an inspection slot may optionally be formed in the ferrule and/or the cap sleeve to allow a technician to inspect the state of the attachment and/or abutment and/or spacing of the optical fiber and the lens.
    Type: Application
    Filed: December 10, 2015
    Publication date: May 26, 2016
    Inventors: Jeffrey D. Nielson, Gary Gibbs, Matthew Cruz, Timothy W. Anderson
  • Publication number: 20160085037
    Abstract: A connectorized fiber optic cabling assembly includes a loose tube fiber optic cable and a connector assembly. The cable has a termination end and includes: an optical fiber bundle including a plurality of optical fibers; at least one strength member; and a jacket surrounding the optical fiber bundle and the at least one strength member. The connector assembly includes a rigid portion and defines a fiber passage. The connector assembly is mounted on the termination end of the cable such that the optical fiber bundle extends through at least a portion of the fiber passage. The plurality of optical fibers of the optical fiber bundle have a ribbonized configuration in the rigid portion of the connector assembly and a loose, non-ribbonized configuration outside the rigid portion. The plurality of optical fibers undergo a transition from the ribbonized configuration to the loose, non-ribbonized configuration in the rigid portion of the connector assembly.
    Type: Application
    Filed: December 4, 2015
    Publication date: March 24, 2016
    Inventors: Timothy W. Anderson, Richard L. Case
  • Patent number: 9229174
    Abstract: A connectorized fiber optic cabling assembly includes a loose tube fiber optic cable and a connector assembly. The cable has a termination end and includes: an optical fiber bundle including a plurality of optical fibers; at least one strength member; and a jacket surrounding the optical fiber bundle and the at least one strength member. The connector assembly includes a rigid portion and defines a fiber passage. The connector assembly is mounted on the termination end of the cable such that the optical fiber bundle extends through at least a portion of the fiber passage. The plurality of optical fibers of the optical fiber bundle have a ribbonized configuration in the rigid portion of the connector assembly and a loose, non-ribbonized configuration outside the rigid portion. The plurality of optical fibers undergo a transition from the ribbonized configuration to the loose, non-ribbonized configuration in the rigid portion of the connector assembly.
    Type: Grant
    Filed: February 19, 2015
    Date of Patent: January 5, 2016
    Assignee: CommScope, Inc. of North Carolina
    Inventors: Timothy W. Anderson, Richard L. Case
  • Publication number: 20150177465
    Abstract: A connectorized fiber optic cabling assembly includes a loose tube fiber optic cable and a connector assembly. The cable has a termination end and includes: an optical fiber bundle including a plurality of optical fibers; at least one strength member; and a jacket surrounding the optical fiber bundle and the at least one strength member. The connector assembly includes a rigid portion and defines a fiber passage. The connector assembly is mounted on the termination end of the cable such that the optical fiber bundle extends through at least a portion of the fiber passage. The plurality of optical fibers of the optical fiber bundle have a ribbonized configuration in the rigid portion of the connector assembly and a loose, non-ribbonized configuration outside the rigid portion. The plurality of optical fibers undergo a transition from the ribbonized configuration to the loose, non-ribbonized configuration in the rigid portion of the connector assembly.
    Type: Application
    Filed: February 19, 2015
    Publication date: June 25, 2015
    Inventors: Timothy W. Anderson, Richard L. Case
  • Patent number: 8992098
    Abstract: A connectorized fiber optic cabling assembly includes a loose tube fiber optic cable and a connector assembly. The cable has a termination end and includes: an optical fiber bundle including a plurality of optical fibers; at least one strength member; and a jacket surrounding the optical fiber bundle and the at least one strength member. The connector assembly includes a rigid portion and defines a fiber passage. The connector assembly is mounted on the termination end of the cable such that the optical fiber bundle extends through at least a portion of the fiber passage. The plurality of optical fibers of the optical fiber bundle have a ribbonized configuration in the rigid portion of the connector assembly and a loose, non-ribbonized configuration outside the rigid portion. The plurality of optical fibers undergo a transition from the ribbonized configuration to the loose, non-ribbonized configuration in the rigid portion of the connector assembly.
    Type: Grant
    Filed: June 18, 2010
    Date of Patent: March 31, 2015
    Assignee: CommScope, Inc. of North Carolina
    Inventors: Timothy W. Anderson, Richard L. Case
  • Patent number: 8882514
    Abstract: A combination includes: (a) a communications module including: a housing; a printed wiring board mounted within the housing; a plurality of RJ-45 jacks mounted on the printed wiring board and accessible from one side of the housing; and a single module connector mounted to the printed wiring board and electrically connected to the RJ-45 jacks, connector being accessible from a second side of the housing; and (b) a cable-connector assembly including: a cable comprising a plurality of subunits, each of the subunits comprising a jacket and a plurality of twisted pairs of conductors positioned within the jacket; and a single cable connector mounted to the printed circuit board and electrically connected to the conductors of the cable subunits. The module connector is attached to the cable connector.
    Type: Grant
    Filed: June 23, 2011
    Date of Patent: November 11, 2014
    Assignee: CommScope, Inc. of North Carolina
    Inventors: Ryan Enge, Theodore Alan Conorich, Patrick Fariello, Richard L. Case, Timothy W. Anderson, Troy Long, Julian Robert Pharney, G. Mabud Choudhury, Richard Mei, Yinglin Yang
  • Publication number: 20140191427
    Abstract: A method and system for affixing multi-core fiber (MCF) within a ferrule includes a UV light source and a light guide. MCFs are placed into epoxy filled holders, e.g., channels or v-grooves, of a ferrule. A first MCF in a first holder is clocked to orient its cores to a desired position. The light source is activated, and the light from the light guide is launched into a cladding layer of the first MCF. The light in the cladding layer will stay in the cladding layer until it reaches the portion of the first MCF in contact with the epoxy, where the light will leak out due to the similarity in the index of refraction. The leaking light will at least partially cure the epoxy to affix the first MCF within the first holder. The process may then be repeated for the remaining MCFs, so that each MCF may be clocked and affixed selectively rather than collectively.
    Type: Application
    Filed: January 8, 2014
    Publication date: July 10, 2014
    Applicant: CommScope, Inc. of North Carolina
    Inventors: Timothy W. ANDERSON, Jeffrey D. NIELSON
  • Patent number: 8731361
    Abstract: A communication patching system includes a platform configured to support a plurality of cables and a first panel pivotably mounted to the platform, the first panel having at least one holder for securing communications adapters to the first panel. A first set of communications adapters is connected to the platform, and a second set of communications adapters mounted in the at least one holder. The first panel is pivotable between a first position in which the second set of communications adapters is spaced from the first set of communications adapters by a first distance and a second position in which the second set of communications adapters is spaced from the first set of communications adapters by a second distance greater than the first distance.
    Type: Grant
    Filed: June 4, 2010
    Date of Patent: May 20, 2014
    Assignee: CommScope, Inc. of North Carolina
    Inventors: Timothy W. Anderson, Richard L. Case
  • Patent number: 8556356
    Abstract: A communications shelf configured to support at least one communications adapter panel includes first and second spaced sidewalls and a first bracket mounted at the first sidewall, the first bracket including a mounting portion fixed relative to the first sidewall and a cantilevered portion projecting away from the first bracket mounting portion and having an end, the first bracket cantilevered portion being configured to shift from a first position wherein the first bracket cantilevered portion end is spaced a first distance from the first sidewall to a second position wherein the first bracket cantilevered end is spaced a second, smaller distance, from the first sidewall under application of a force and to return to the first position when the force is discontinued, the first bracket cantilevered portion including at least one pivot pin or at least one opening forming a bearing for a pivot shaft.
    Type: Grant
    Filed: February 21, 2011
    Date of Patent: October 15, 2013
    Assignee: CommScope, Inc. of North Carolina
    Inventors: Timothy W. Anderson, Craig B. Wilson, Andrew Foreman
  • Patent number: 8393804
    Abstract: A terminus for a fiber optic cable includes a ferrule. In one embodiment, an optical fiber of the cable passes through a central bore of the ferrule and is attached to a lens seated in a conical or cylindrical seat formed in an end surface of the ferrule by an epoxy. In a second embodiment, an optical fiber of the cable passes through the central bore of the ferrule. Next, a cap sleeve with a lens therein is slid over and attached to the ferrule such that the lens abuts or is attached to the optical fiber. In either embodiment, an inspection slot may optionally be formed in the ferrule and/or the cap sleeve to allow a technician to inspect the state of the attachment and/or abutment and/or spacing of the optical fiber and lens.
    Type: Grant
    Filed: December 17, 2008
    Date of Patent: March 12, 2013
    Assignee: CommScope, Inc. of North Carolina
    Inventors: Jeffrey D. Nielson, Gary Gibbs, Matthew Cruz, Timothy W. Anderson
  • Publication number: 20120211447
    Abstract: A communications shelf configured to support at least one communications adapter panel includes first and second spaced sidewalls and a first bracket mounted at the first sidewall, the first bracket including a mounting portion fixed relative to the first sidewall and a cantilevered portion projecting away from the first bracket mounting portion and having an end, the first bracket cantilevered portion being configured to shift from a first position wherein the first bracket cantilevered portion end is spaced a first distance from the first sidewall to a second position wherein the first bracket cantilevered end is spaced a second, smaller distance, from the first sidewall under application of a force and to return to the first position when the force is discontinued, the first bracket cantilevered portion including at least one pivot pin or at least one opening forming a bearing for a pivot shaft.
    Type: Application
    Filed: February 21, 2011
    Publication date: August 23, 2012
    Inventors: Timothy W. Anderson, Craig B. Wilson, Andrew Foreman
  • Patent number: RE46780
    Abstract: A communication patching system includes a platform configured to support a plurality of cables and a first panel pivotably mounted to the platform, the first panel having at least one holder for securing communications adapters to the first panel. A first set of communications adapters is connected to the platform, and a second set of communications adapters mounted in the at least one holder. The first panel is pivotable between a first position in which the second set of communications adapters is spaced from the first set of communications adapters by a first distance and a second position in which the second set of communications adapters is spaced from the first set of communications adapters by a second distance greater than the first distance.
    Type: Grant
    Filed: May 20, 2016
    Date of Patent: April 10, 2018
    Assignee: CommScope, Inc. of North Carolina
    Inventors: Timothy W. Anderson, Richard L. Case