Patents by Inventor Timothy Zahnley

Timothy Zahnley has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11177886
    Abstract: A pluggable bidirectional optical amplifier module may include preamp and booster optical amplifiers and a housing. The preamp optical amplifier may be configured to amplify optical signals traveling in a first direction. The booster optical amplifier may be configured to amplify optical signals traveling in a second direction. The housing may at least partially enclose the preamp optical amplifier and the booster optical amplifier. The pluggable bidirectional optical amplifier module may have a mechanical form factor that is compliant with a pluggable communication module form factor MSA. A colorless mux/demux cable assembly may be operated with the pluggable bidirectional optical amplifier. The colorless mux/demux cable assembly may include a 1:N optical splitter a N:1 optical combiner coupled side-by-side to the 1:N optical splitter, a first fiber optic cable optic cable, and a second fiber optic cable.
    Type: Grant
    Filed: March 6, 2020
    Date of Patent: November 16, 2021
    Assignee: II-VI DELAWARE, INC.
    Inventors: Martin Williams, Yajun Wang, Eric Green, Aravanan Gurusami, Deepak Devicharan, Timothy Zahnley, Mike Burgess
  • Patent number: 10564068
    Abstract: An OTDR system utilizes a laser source that is turned “on” and kept powered until its light reaches the end of the fiber span being measured (i.e., until the fiber span is fully illuminated). At any point in time after the fiber is fully illuminated, the laser source can be turned “off”. The return (reflected and backscattered) signal is directed into a photodetector of the OTDR, and is measured from the point in time when the fiber span starts to be illuminated. The measurements are made by sampling the return signal at predetermined time intervals—defined as the sampling rate. The created power samples are then subjected to post-processing in the form of a differentiation operation to create a conventional OTDR trace from the collected data.
    Type: Grant
    Filed: July 5, 2017
    Date of Patent: February 18, 2020
    Assignee: II-VI Delaware, Inc.
    Inventors: Aravanan Gurusami, Timothy Zahnley, Scott Dahl, Deepak Devicharan, Ian Peter McClean
  • Publication number: 20170307472
    Abstract: An OTDR system utilizes a laser source that is turned “on” and kept powered until its light reaches the end of the fiber span being measured (i.e., until the fiber span is fully illuminated). At any point in time after the fiber is fully illuminated, the laser source can be turned “off”. The return (reflected and backscattered) signal is directed into a photodetector of the OTDR, and is measured from the point in time when the fiber span starts to be illuminated. The measurements are made by sampling the return signal at predetermined time intervals—defined as the sampling rate. The created power samples are then subjected to post-processing in the form of a differentiation operation to create a conventional OTDR trace from the collected data.
    Type: Application
    Filed: July 5, 2017
    Publication date: October 26, 2017
    Applicant: II-VI Incorporated
    Inventors: Aravanan Gurusami, Timothy Zahnley, Scott Dahl, Deepak Devicharan, Ian Peter McClean
  • Patent number: 9752955
    Abstract: An OTDR system utilizes a laser source that is turned “on” and kept powered until its light reaches the end of the fiber span being measured (i.e., until the fiber span is fully illuminated). At any point in time after the fiber is fully illuminated, the laser source can be turned “off”. The return (reflected and backscattered) signal is directed into a photodetector of the OTDR, and is measured from the point in time when the fiber span starts to be illuminated. The measurements are made by sampling the return signal at predetermined time intervals—defined as the sampling rate. The created power samples are then subjected to post-processing in the form of a differentiation operation to create a conventional OTDR trace from the collected data.
    Type: Grant
    Filed: June 30, 2015
    Date of Patent: September 5, 2017
    Assignee: II-VI INCORPORATED
    Inventors: Aravanan Gurusami, Timothy Zahnley, Scott Dahl, Deepak Devicharan, Ian Peter McClean
  • Publication number: 20160033359
    Abstract: An OTDR system utilizes a laser source that is turned “on” and kept powered until its light reaches the end of the fiber span being measured (i.e., until the fiber span is fully illuminated). At any point in time after the fiber is fully illuminated, the laser source can be turned “off”. The return (reflected and backscattered) signal is directed into a photodetector of the OTDR, and is measured from the point in time when the fiber span starts to be illuminated. The measurements are made by sampling the return signal at predetermined time intervals—defined as the sampling rate. The created power samples are then subjected to post-processing in the form of a differentiation operation to create a conventional OTDR trace from the collected data.
    Type: Application
    Filed: June 30, 2015
    Publication date: February 4, 2016
    Applicant: II-VI INCORPORATED
    Inventors: Aravanan Gurusami, Timothy Zahnley, Scott Dahl, Deepak Devicharan, Ian Peter McClean
  • Patent number: 6690506
    Abstract: According to an illustrative embodiment of the present invention, a method for controlling an optical amplifier is disclosed. The illustrative method includes receiving a portion of an input signal to the optical amplifier; receiving a portion of an output signal from a first amplification stage; receiving a portion of an output signal of the optical amplifier; and adjusting the first amplification stage and a second amplification stage based on the received portions to substantially control the optical amplifier. According to another illustrative embodiment of the present invention, an optical amplifier includes a controller which receives a portion of an output signal from a first amplification stage and a portion of an output signal from the optical amplifier. The controller adjusts the first amplification stage and a second amplification stage based on the received portions of the signals.
    Type: Grant
    Filed: August 31, 2001
    Date of Patent: February 10, 2004
    Assignee: Corning Incorporated
    Inventors: Timothy Zahnley, Aravanan Gurusami, Timothy W. T. Qian, Muhidin Lelic
  • Publication number: 20020176156
    Abstract: According to an illustrative embodiment of the present invention, a method for controlling an optical amplifier is disclosed. The illustrative method includes receiving a portion of an input signal to the optical amplifier; receiving a portion of an output signal from a first amplification stage; receiving a portion of an output signal of the optical amplifier; and adjusting the first amplification stage and a second amplification stage based on the received portions to substantially control the optical amplifier.
    Type: Application
    Filed: August 31, 2001
    Publication date: November 28, 2002
    Inventors: Timothy Zahnley, Aravanan Gurusami, Timothy W.T. Qian, Muhidin Lelic