Patents by Inventor Timur V. Voskoboynikov

Timur V. Voskoboynikov has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11208365
    Abstract: Processes and apparatuses for benzene and/or toluene methylation under conditions of low temperatures in one of a vapor phase, a liquid phase or a mixed vapor-liquid phase, in an aromatics complex for producing para-xylene are described. More specifically, a process for producing a xylene isomer comprising reacting oxygenates with an aromatic feedstock comprising toluene and/or benzene in a methylation zone operating under alkylation conditions including one of a vapor, a liquid phase or a mixed vapor-liquid phase in the presence of a catalyst to provide a product stream comprising the xylene isomer is described.
    Type: Grant
    Filed: November 10, 2017
    Date of Patent: December 28, 2021
    Assignee: UOP LLC
    Inventors: Deng-Yang Jan, Timur V. Voskoboynikov, Mark B. Koch
  • Patent number: 11130719
    Abstract: This present disclosure relates to processes and apparatuses for methylation of aromatics in an aromatics complex for producing a xylene isomer product. More specifically, the present disclosure relates to a process for producing para-xylene by the selective methylation of toluene and/or benzene in an aromatics complex.
    Type: Grant
    Filed: December 5, 2017
    Date of Patent: September 28, 2021
    Assignee: UOP LLC
    Inventors: Timur V. Voskoboynikov, Deng-Yang Jan, John Q. Chen, Edwin P. Boldingh
  • Patent number: 11130720
    Abstract: This present disclosure relates to processes for methylation of aromatics in an aromatics complex for producing a xylene isomer product. More specifically, the present disclosure relates to a process for producing para-xylene by the selective methylation of toluene and/or benzene in an aromatics complex using mild reaction conditions, namely a combination of low temperatures and elevated pressures using a zeolite with lower number of external acid sites.
    Type: Grant
    Filed: March 23, 2018
    Date of Patent: September 28, 2021
    Assignee: UOP LLC
    Inventors: Timur V. Voskoboynikov, Deng-Yang Jan, John Q. Chen, Jaime G. Moscoso
  • Patent number: 10668455
    Abstract: A catalyst and a process for using the catalyst are presented. The catalyst is a heterogeneous catalyst and includes active metal halides bonded to functional groups. The functional groups are bonded to a polymeric backbone to form the structure supporting the catalyst. The catalyst is useful for the dimerization of acetylene to convert the acetylene to a larger hydrocarbon, and in particular to dimerize acetylene to vinylacetylene.
    Type: Grant
    Filed: December 14, 2018
    Date of Patent: June 2, 2020
    Inventors: Timur V. Voskoboynikov, Alakananda Bhattacharyya, Nikolay Y. Adonin, Mariya N. Timofeeva, Sergey A. Prikhodko, Valentin N. Parmon
  • Publication number: 20190292117
    Abstract: This present disclosure relates to processes for methylation of aromatics in an aromatics complex for producing a xylene isomer product. More specifically, the present disclosure relates to a process for producing para-xylene by the selective methylation of toluene and/or benzene in an aromatics complex using mild reaction conditions, namely a combination of low temperatures and elevated pressures using a zeolite with lower number of external acid sites.
    Type: Application
    Filed: March 23, 2018
    Publication date: September 26, 2019
    Inventors: Timur V. Voskoboynikov, Deng-Yang Jan, John Q. Chen, Jaime G. Moscoso
  • Patent number: 10392316
    Abstract: The present invention relates to minimizing benzene, toluene, and an A9/A10 recycle loop in a zero benzene aromatics complex. More specifically, the present invention relates to a minimizing benzene, toluene, and an A9/A10 recycle loop in a zero benzene aromatics complex wherein the aromatic feed has a low methyl to phenyl ratio, and where the aromatic feed has a high methyl to phenyl ratio.
    Type: Grant
    Filed: October 11, 2017
    Date of Patent: August 27, 2019
    Assignee: UOP LLC
    Inventors: Elizabeth A. Carter, Deng-Yang Jan, Timur V. Voskoboynikov
  • Publication number: 20190169091
    Abstract: This present disclosure relates to processes and apparatuses for methylation of aromatics in an aromatics complex for producing a xylene isomer product. More specifically, the present disclosure relates to a process for producing para-xylene by the selective methylation of toluene and/or benzene in an aromatics complex.
    Type: Application
    Filed: December 5, 2017
    Publication date: June 6, 2019
    Inventors: Timur V. Voskoboynikov, Deng-Yang Jan, John Q. Chen, Edwin P. Boldingh
  • Patent number: 10308571
    Abstract: The present invention relates to minimizing benzene, toluene, and an A9/A10 recycle loop in a zero benzene aromatics complex. More specifically, the present invention relates to a minimizing benzene, toluene, and an A9/A10 recycle loop in a zero benzene aromatics complex wherein the aromatic feed has a low methyl to phenyl ratio, and where the aromatic feed has a high methyl to phenyl ratio.
    Type: Grant
    Filed: October 11, 2017
    Date of Patent: June 4, 2019
    Assignee: UOP LLC
    Inventors: Elizabeth A. Carter, Deng-Yang Jan, Timur V. Voskoboynikov
  • Publication number: 20190118169
    Abstract: A catalyst and a process for using the catalyst are presented. The catalyst is a heterogeneous catalyst and includes active metal halides bonded to functional groups. The functional groups are bonded to a polymeric backbone to form the structure supporting the catalyst. The catalyst is useful for the dimerization of acetylene to convert the acetylene to a larger hydrocarbon, and in particular to dimerize acetylene to vinylacetylene.
    Type: Application
    Filed: December 14, 2018
    Publication date: April 25, 2019
    Inventors: Timur V. Voskoboynikov, Alakananda Bhattacharyya, Nikolay Y. Adonin, Mariya N. Timofeeva, Sergey A. Prikhodko, Valentin N. Parmon
  • Publication number: 20190106367
    Abstract: The present invention relates to minimizing benzene, toluene, and an A9/A10 recycle loop in a zero benzene aromatics complex. More specifically, the present invention relates to a minimizing benzene, toluene, and an A9/A10 recycle loop in a zero benzene aromatics complex wherein the aromatic feed has a low methyl to phenyl ratio, and where the aromatic feed has a high methyl to phenyl ratio.
    Type: Application
    Filed: October 11, 2017
    Publication date: April 11, 2019
    Inventors: Elizabeth A. Carter, Deng-Yang Jan, Timur V. Voskoboynikov
  • Publication number: 20190106368
    Abstract: The present invention relates to minimizing benzene, toluene, and an A9/A10 recycle loop in a zero benzene aromatics complex. More specifically, the present invention relates to a minimizing benzene, toluene, and an A9/A10 recycle loop in a zero benzene aromatics complex wherein the aromatic feed has a low methyl to phenyl ratio, and where the aromatic feed has a high methyl to phenyl ratio.
    Type: Application
    Filed: October 11, 2017
    Publication date: April 11, 2019
    Inventors: Elizabeth A. Carter, Deng-Yang Jan, Timur V. Voskoboynikov
  • Publication number: 20180170831
    Abstract: This present disclosure relates to processes and apparatuses for benzene and/or toluene methylation under conditions of low temperatures in one of a vapor phase, a liquid phase or a mixed vapor-liquid phase, in an aromatics complex for producing para-xylene. More specifically, the present disclosure relates to a process is provided for producing a xylene isomer comprising reacting oxygenates with an aromatic feedstock comprising toluene and/or benzene in a methylation zone operating under alkylation conditions including one of a vapor, a liquid phase or a mixed vapor-liquid phase in the presence of a catalyst to provide a product stream comprising the xylene isomer.
    Type: Application
    Filed: November 10, 2017
    Publication date: June 21, 2018
    Inventors: Deng-Yang Jan, Timur V. Voskoboynikov, Mark B. Koch
  • Patent number: 9732015
    Abstract: A selective hydrogenation process is described. The process includes dissolving acetylene and hydrogen in a solvent to form a liquid feedstream. The solvent comprises a mixture of a polar organic solvent and a non-polar organic solvent. The liquid feedstream is contacted with a heterogeneous supported selective hydrogenation catalyst at selective hydrogenation conditions to convert at least a portion of the acetylene to ethylene forming a liquid reaction mixture comprising the ethylene produced.
    Type: Grant
    Filed: May 29, 2015
    Date of Patent: August 15, 2017
    Assignee: UOP LLC
    Inventors: Vincent G. Mezera, Timur V. Voskoboynikov
  • Publication number: 20160347684
    Abstract: A selective hydrogenation process is described. The process includes dissolving acetylene and hydrogen in a solvent to form a liquid feedstream. The solvent comprises a mixture of a polar organic solvent and a non-polar organic solvent. The liquid feedstream is contacted with a heterogeneous supported selective hydrogenation catalyst at selective hydrogenation conditions to convert at least a portion of the acetylene to ethylene forming a liquid reaction mixture comprising the ethylene produced.
    Type: Application
    Filed: May 29, 2015
    Publication date: December 1, 2016
    Inventors: Vincent G. Mezera, Timur V. Voskoboynikov
  • Patent number: 8921634
    Abstract: A new family of aluminosilicate zeolites designated UZM-44 has been synthesized. These zeolites are represented by the empirical formula. NanMmk+TtAl1-xExSiyOz where “n” is the mole ratio of Na to (Al+E), M represents a metal or metals from zinc, Group 1, Group 2, Group 3 and or the lanthanide series of the periodic table, “m” is the mole ratio of M to (Al+E), “k” is the average charge of the metal or metals M, T is the organic structure directing agent or agents, and E is a framework element such as gallium. UZM-44 has catalytic properties for carrying processes involving contacting at least one low carbon number aliphatic hydrocarbon having from 1 to about 4 carbon atoms per molecule with the catalytic composite comprising UZM-44 to produce at least one aromatic hydrocarbon.
    Type: Grant
    Filed: December 11, 2013
    Date of Patent: December 30, 2014
    Assignee: UOP LLC
    Inventors: Timur V. Voskoboynikov, Lisa M. King, Vincent G. Mezera, Christopher P. Nicholas, Mark A. Miller
  • Patent number: 8907151
    Abstract: A new family of coherently grown composites of TUN and IMF zeotypes has been synthesized and shown to be effective catalysts in processes for converting at least one aliphatic hydrocarbon having from 1 to about 4 carbon atoms in a feedstream to provide at least one aromatic hydrocarbon. These zeolites are represented by the empirical formula. NanMmk+TtAl1-xExSiyOz where M represents zinc or a metal or metals from Group 1, Group 2, Group 3 or the lanthanide series of the periodic table, T is the organic structure directing agent or agents and E is a framework element such as gallium. The process involves contacting a low carbon number aliphatic hydrocarbon with the coherently grown composite of TUN and IMF zeotypes to produce at least an aromatic.
    Type: Grant
    Filed: December 11, 2013
    Date of Patent: December 9, 2014
    Assignee: UOP LLC
    Inventors: Timur V. Voskoboynikov, Christopher P. Nicholas, Mark A. Miller, Lisa M. King, Vincent G. Mezera
  • Publication number: 20140163280
    Abstract: A new family of aluminosilicate zeolites designated UZM-44 has been synthesized. These zeolites are represented by the empirical formula. NanMmk+TtAl1-xExSiyOz where “n” is the mole ratio of Na to (Al+E), M represents a metal or metals from zinc, Group 1, Group 2, Group 3 and or the lanthanide series of the periodic table, “m” is the mole ratio of M to (Al+E), “k” is the average charge of the metal or metals M, T is the organic structure directing agent or agents, and E is a framework element such as gallium. UZM-44 has catalytic properties for carrying processes involving contacting at least one low carbon number aliphatic hydrocarbon having from 1 to about 4 carbon atoms per molecule with the catalytic composite comprising UZM-44 to produce at least one aromatic hydrocarbon.
    Type: Application
    Filed: December 11, 2013
    Publication date: June 12, 2014
    Applicant: UOP LLC
    Inventors: Timur V. Voskoboynikov, Lisa M. King, Vincent G. Mezera, Christopher P. Nicholas, Mark A. Miller
  • Publication number: 20140163281
    Abstract: A catalyst for the conversion of at least one low carbon number aliphatic hydrocarbon in a feedstream to provide at least one aromatic hydrocarbon, the catalyst comprising a zeolite and a promoter metal M, the zeolite characterized by the retention of greater than 40% of the tetrahedral aluminum sites in the zeolite following calcination of the catalyst in air at 750° C. for 3 hours when compared to the amount of tetrahedral aluminum in the same catalyst after calcination in air at 500° C. for 3 hours.
    Type: Application
    Filed: December 11, 2013
    Publication date: June 12, 2014
    Applicant: UOP LLC
    Inventors: Timur V. Voskoboynikov, Christopher P. Nicholas, Mark A. Miller, Lisa M. King, Vincent G. Mezera
  • Publication number: 20140163282
    Abstract: A new family of coherently grown composites of TUN and IMF zeotypes has been synthesized and shown to be effective catalysts in processes for converting at least one aliphatic hydrocarbon having from 1 to about 4 carbon atoms in a feedstream to provide at least one aromatic hydrocarbon. These zeolites are represented by the empirical formula. NanMmk+TtAl1-xExSiyOz where M represents zinc or a metal or metals from Group 1, Group 2, Group 3 or the lanthanide series of the periodic table, T is the organic structure directing agent or agents and E is a framework element such as gallium. The process involves contacting a low carbon number aliphatic hydrocarbon with the coherently grown composite of TUN and IMF zeotypes to produce at least an aromatic.
    Type: Application
    Filed: December 11, 2013
    Publication date: June 12, 2014
    Applicant: UOP LLC
    Inventors: Timur V. Voskoboynikov, Christopher P. Nicholas, Mark A. Miller, Lisa M. King, Vincent G. Mezera
  • Patent number: 8609567
    Abstract: A catalyst is present for use in an olefin cracking process. The catalyst is a zeolite that has been loaded with an alkaline earth metal. The alkaline earth metal loaded catalyst has an increased steaming tolerance and increases the useful life of the catalyst during the cracking process and the regeneration cycle.
    Type: Grant
    Filed: December 16, 2009
    Date of Patent: December 17, 2013
    Assignee: UOP LLC
    Inventors: Timur V. Voskoboynikov, Aleksey Y. Pelekh, John J. Senetar