Patents by Inventor Timur Zhiyentayev

Timur Zhiyentayev has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230295697
    Abstract: The present invention, among other things, provides technologies for detecting and/or quantifying nucleic acids in cells, tissues, organs or organisms. In some embodiments, through sequential barcoding, the present invention provides methods for high-throughput profiling of a large number of targets, such as transcripts and/or DNA loci.
    Type: Application
    Filed: September 8, 2022
    Publication date: September 21, 2023
    Inventors: Long CAI, Eric LUBECK, Timur ZHIYENTAYEV, Ahmet COSKUN, Ting-Fang HE, Chang Ho SOHN, Sheel SHAH
  • Publication number: 20230212658
    Abstract: The present invention, among other things, provides technologies for detecting and/or quantifying nucleic acids in cells, tissues, organs or organisms. In some embodiments, through sequential barcoding, the present invention provides methods for high-throughput profiling of a large number of targets, such as transcripts and/or DNA loci.
    Type: Application
    Filed: September 8, 2022
    Publication date: July 6, 2023
    Inventors: Long CAI, Eric LUBECK, Timur ZHIYENTAYEV, Ahmet COSKUN, Ting-Fang HE, Chang Ho SOHN, Sheel SHAH
  • Patent number: 11473129
    Abstract: The present invention, among other things, provides technologies for detecting and/or quantifying nucleic acids in cells, tissues, organs or organisms. In some embodiments, through sequential barcoding, the present invention provides methods for high-throughput profiling of a large number of targets, such as transcripts and/or DNA loci.
    Type: Grant
    Filed: September 16, 2019
    Date of Patent: October 18, 2022
    Assignee: CALIFORNIA INSTITUTE OF TECHNOLOGY
    Inventors: Long Cai, Eric Lubeck, Timur Zhiyentayev, Ahmet Coskun, Ting-Fang He, Chang Ho Sohn, Sheel Shah
  • Publication number: 20200080139
    Abstract: The present invention, among other things, provides technologies for detecting and/or quantifying nucleic acids in cells, tissues, organs or organisms. In some embodiments, through sequential barcoding, the present invention provides methods for high-throughput profiling of a large number of targets, such as transcripts and/or DNA loci.
    Type: Application
    Filed: September 16, 2019
    Publication date: March 12, 2020
    Inventors: Long CAI, Eric LUBECK, Timur ZHIYENTAYEV, Ahmet COSKUN, Ting-Fang HE, Chang Ho SOHN, Sheel SHAH
  • Patent number: 10457980
    Abstract: The present invention, among other things, provides technologies for detecting and/or quantifying nucleic acids in cells, tissues, organs or organisms. In some embodiments, through sequential barcoding, the present invention provides methods for high-throughput profiling of a large number of targets, such as transcripts and/or DNA loci.
    Type: Grant
    Filed: April 30, 2014
    Date of Patent: October 29, 2019
    Assignee: California Institute of Technology
    Inventors: Long Cai, Eric Lubeck, Timur Zhiyentayev, Ahmet Coskun, Ting-Fang He, Chang Ho Sohn, Sheel Shah
  • Publication number: 20150267251
    Abstract: The present invention, among other things, provides technologies for detecting and/or quantifying nucleic acids in cells, tissues, organs or organisms. In some embodiments, through sequential barcoding, the present invention provides methods for high-throughput profiling of a large number of targets, such as transcripts and/or DNA loci.
    Type: Application
    Filed: April 30, 2014
    Publication date: September 24, 2015
    Inventors: Long Cai, Eric Lubeck, Timur Zhiyentayev, Ahmet Coskun, Ting-Fang He, Chang Ho Sohn, Sheel Shah
  • Publication number: 20140073520
    Abstract: Methods and systems are provided for creating molecular barcodes for DNA sequences of interest in chromosomes within single cells and for resolving such barcodes using super-resolution technologies. The invention additionally teaches creating molecular barcodes for mRNA sequences that can be visualized at the same time as the aforementioned DNA sequences. The inventive approach allows for the detection of multiple loci on the chromosomes of tumor biopsy sample cells, and can accomplish all of the current applications of DNA FISH in cancer diagnostics, with the additional benefit of being highly multiplexable.
    Type: Application
    Filed: August 26, 2013
    Publication date: March 13, 2014
    Applicant: California Institute of Technology
    Inventors: Long Cai, Timur Zhiyentayev