Patents by Inventor Tin Ho Andy Wu

Tin Ho Andy Wu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230290736
    Abstract: An Integrated Circuit (IC) package has a ferrite-dielectric shield between planar transformer coils and a semiconductor chip. The shield blocks Electro-Magnetic Interference (EMI) generated by currents in transformer coils from reaching the semiconductor chip. Multiple layers of planar transformer coils serve as primary or secondary coils and can be connected together in series or parallel using center posts and coil extensions from outer coil windings to lead-frame risers that also have external package connectors such as pins or bonding balls. The center winding of an upper transformer coil connects to the semiconductor chip on a die attach pad through a center post that fits through an opening in the shield that is over the air core center of the transformer coil. Bonding wires connect pads on the semiconductor chip to lead-frame pads on lead-frame risers that end at external package connectors.
    Type: Application
    Filed: March 14, 2022
    Publication date: September 14, 2023
    Inventors: Chik Wai (David) NG, Kwun Yuan (Godwin) HO, Ki Hin (Gary) CHOI, Tin Ho (Andy) WU, Wai Kit (Victor) SO
  • Publication number: 20230290735
    Abstract: An Integrated Circuit (IC) package has a ferrite-dielectric shield between a planar inductor coil and a semiconductor chip. The shield blocks Electro-Magnetic Interference (EMI) generated by currents in the inductor coil from reaching the semiconductor chip. The shield has a ferrite layer surrounded by upper and lower dielectric laminate layers to prevent electrical shorts. The center end of the inductor coil connects to the semiconductor chip through a center post that fits through an opening in the shield that is over the air core center of the inductor coil. The center post can connect to a die attach pad that the semiconductor chip is mounted to. Bonding wires connect pads on the semiconductor chip to lead-frame pads on lead-frame risers that end at external package connectors. The outer end of the inductor coil connects to lead-frame outer risers also having external package connectors such as pins or bonding balls.
    Type: Application
    Filed: March 14, 2022
    Publication date: September 14, 2023
    Inventors: Chik Wai (David) NG, Kwun Yuan (Godwin) HO, Ki Hin (Gary) CHOI, Tin Ho (Andy) WU, Wai Kit (Victor) SO
  • Patent number: 11206014
    Abstract: A modulator spreads the spectrum of a generated clock to reduce Electro-Magnetic Interference (EMI). A capacitor is charged by a variable current to generate a ramp voltage that is compared to a reference to end a clock cycle and discharge the capacitor. An up-down counter drives a Digital-to-Analog Converter (DAC) that controls the variable charging current to provide triangle modulation. A smaller offset current is added or subtracted for cubic modulation when the up-down counter reaches its minimum count. A frequency divider that clocks the up-down counter also clocks a Linear-Feedback Shift-Register (LFSR) to that controls pseudo-random current sources that further modulate variable current and frequency. The LFSR is clocked with the up-down counter to modulate each frequency step, or only at the minimum count to randomly modulate at the minimum frequency. Binary-weighted bits from the up-down counter to the DAC are swapped to modulate the frequency step size.
    Type: Grant
    Filed: April 27, 2021
    Date of Patent: December 21, 2021
    Assignee: High Tech Technology Limited
    Inventors: Chik Wai (David) Ng, Wai Kit (Victor) So, Yuanzhe (Kevin) Xu, Ka Lok (Roy) Ng, Tin Ho (Andy) Wu
  • Patent number: 9484945
    Abstract: A correcting asynchronous Successive-Approximation Register (SAR) analog-to-digital converter (ADC) detects and corrects metastability errors. An analog signal is synchronously sampled by a system clock, but data bits are converted asynchronously. A valid detector compares true and complement outputs of a comparator that compares the sampled voltage to a DAC voltage generated from digital test value from the SAR. Once the true and complement outputs diverge past logic thresholds, the valid detector activates a VALID signal indicating that comparison is completed. The compare result is then latched in as a data bit and the SAR advances to the next test value. Once all bits have been converted, an End-of-Conversion (EOC) is signaled. If the EOC does not occur by the end of the system clock, a metastability error is detected. The current bit that never finished comparison is forced high and all other unconverted bits are forced low.
    Type: Grant
    Filed: May 5, 2016
    Date of Patent: November 1, 2016
    Assignee: Hong Kong Applied Science and Technology Research Institute Company, Limited
    Inventors: Ho Ming (Karen) Wan, Kwai Chi Chan, Tin Ho (Andy) Wu
  • Patent number: 9190961
    Abstract: A Programmable-Gain Amplifier (PGA) has a digital value that programmably adjusts the gain of the analog amplifier. A variable capacitor has several switched sub-capacitors that are enabled by the digital value. Enabled sub-capacitors are switched between a sampled input and a virtual ground on one terminal, and connect to a summing node on the other terminal. The summing node connects to the inverting input of an op amp either through a switch or through a double-sampling capacitor that stores an offset. A feedback capacitor is in parallel with a sampling capacitor during a second clock phase when direct-charge transfer occurs, reducing power consumption of the amplifier. The feedback capacitor samples the sampled input during the first clock phase. The PGA gain is proportional to the sum of capacitances of enabled sub-capacitors. The gain can be adjusted for sensor inputs to an Analog Front-End (AFE), such as for an electro-cardiogram (ECG).
    Type: Grant
    Filed: April 29, 2014
    Date of Patent: November 17, 2015
    Assignee: Hong Kong Applied Science & Technology Research Institute Company, Limited
    Inventors: Ho Ming (Karen) Wan, Kwai Chi Chan, Tin Ho (Andy) Wu
  • Publication number: 20150311868
    Abstract: A Programmable-Gain Amplifier (PGA) has a digital value that programmably adjusts the gain of the analog amplifier. A variable capacitor has several switched sub-capacitors that are enabled by the digital value. Enabled sub-capacitors are switched between a sampled input and a virtual ground on one terminal, and connect to a summing node on the other terminal. The summing node connects to the inverting input of an op amp either through a switch or through a double-sampling capacitor that stores an offset. A feedback capacitor is in parallel with a sampling capacitor during a second clock phase when direct-charge transfer occurs, reducing power consumption of the amplifier. The feedback capacitor samples the sampled input during the first clock phase. The PGA gain is proportional to the sum of capacitances of enabled sub-capacitors. The gain can be adjusted for sensor inputs to an Analog Front-End (AFE), such as for an electro-cardiogram (ECG).
    Type: Application
    Filed: April 29, 2014
    Publication date: October 29, 2015
    Applicant: Hong Kong Applied Science & Technology Research Institute Company Limited
    Inventors: Ho Ming (Karen) WAN, Kwai Chi CHAN, Tin Ho (Andy) WU
  • Patent number: 8421658
    Abstract: A Successive-Approximation Register Analog-to-Digital Converter (SAR-ADC) predicts compensation values for use in a future cycle. A compensation value is applied to capacitors in a calibration Y-side capacitor array to compensate for capacitance errors in a binary-weighted X-side capacitor array. Two compute engines pre-calculate predicted-0 and predicted-1 compensation values for a next bit to be converted. At the end of the current cycle when the comparator determines the current bit, the comparator also controls a mux to select one of the two predicted compensation values. Thus the compensation value is available at the beginning of the next bit's cycle, eliminating a long calculation delay. The compensation value for the first bit to be converted, such as the MSB, is calculated during calibration. Compensation values for other bits are data-dependent. Calibration values are accumulated during calibration to generate the first conversion compensation value for the first bit to be converted.
    Type: Grant
    Filed: November 24, 2011
    Date of Patent: April 16, 2013
    Assignee: Hong Kong Applied Science & Technology Research Institute Company, Ltd.
    Inventors: Hok Mo Yau, Tin Ho (Andy) Wu, Kam Chuen Wan, Yat To (William) Wong
  • Publication number: 20100164761
    Abstract: A re-configurable circuit acts as an Analog-to-Digital Converter (ADC) and as a digital-to-analog converter (DAC). An array of binary-weighted capacitors stores an analog input. Switches connect different capacitors in the array to fixed voltages that cause charge-sharing with a terminal capacitor. The voltage of the terminal capacitor is compared by a re-configurable comparator stage for each different combination of the capacitors. The comparison results are analyzed to determine the closest digital value for the analog input. In DAC mode, the array capacitors are switched based on an input digital value. The switched capacitors connect to a charge-sharing line to generate an analog voltage that is applied to the re-configurable comparator stage. A differential amplifier generates a buffered analog voltage that is fed back to the other input of the re-configurable comparator stage for unity gain. The gain of the re-configurable comparator stage adjusts for ADC and DAC modes.
    Type: Application
    Filed: December 30, 2008
    Publication date: July 1, 2010
    Applicant: Hong Kong Applied Science & Technology Research Institute Company Limited
    Inventors: Ho Ming Karen Wan, Yat To William Wong, Kwai Chi Chan, Hok Mo Yau, Tin Ho Andy Wu, Kwok Kuen David Kwong
  • Patent number: 7741981
    Abstract: A re-configurable circuit acts as an Analog-to-Digital Converter (ADC) and as a digital-to-analog converter (DAC). An array of binary-weighted capacitors stores an analog input. Switches connect different capacitors in the array to fixed voltages that cause charge-sharing with a terminal capacitor. The voltage of the terminal capacitor is compared by a re-configurable comparator stage for each different combination of the capacitors. The comparison results are analyzed to determine the closest digital value for the analog input. In DAC mode, the array capacitors are switched based on an input digital value. The switched capacitors connect to a charge-sharing line to generate an analog voltage that is applied to the re-configurable comparator stage. A differential amplifier generates a buffered analog voltage that is fed back to the other input of the re-configurable comparator stage for unity gain. The gain of the re-configurable comparator stage adjusts for ADC and DAC modes.
    Type: Grant
    Filed: December 30, 2008
    Date of Patent: June 22, 2010
    Assignee: Hong Kong Applied Science and Technology Research Institute Co., Ltd.
    Inventors: Ho Ming Karen Wan, Yat To William Wong, Kwai Chi Chan, Hok Mo Yau, Tin Ho Andy Wu, Kwok Kuen David Kwong