Patents by Inventor Tin Komljenovic

Tin Komljenovic has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11971577
    Abstract: A device comprises first, second and third elements fabricated on a common substrate. The first element comprises an active waveguide structure comprising: a first portion supporting a first optical mode. The second element comprises a passive waveguide structure supporting a second optical mode. The third element, at least partly butt-coupled to the second portion, comprises an intermediate waveguide structure supporting intermediate optical modes. At least part of the second element is non-linear, supporting frequency conversion. A tapered waveguide structure in at least one of the second and third elements facilitates efficient adiabatic transformation between the first optical mode and one intermediate optical mode. No adiabatic transformation occurs between any intermediate optical mode and the first optical mode. Mutual alignments of the elements are defined using lithographic alignment marks.
    Type: Grant
    Filed: June 13, 2022
    Date of Patent: April 30, 2024
    Assignee: Nexus Photonics, Inc
    Inventors: Minh Tran, Tin Komljenovic
  • Publication number: 20230420916
    Abstract: A device includes a first element having a passive waveguide structure supporting a first optical mode, a second element providing heat spreading functionality, a third element thermally coupled to the second element, having an active waveguide structure supporting a second optical mode, and a fourth element, at least partly butt-coupled to the third element, having an intermediate waveguide structure supporting intermediate optical modes. A tapered waveguide structure in either one of the first and fourth elements facilitates efficient adiabatic transformation between the first optical mode and one of the intermediate optical modes. No adiabatic transformation occurs between any of the intermediate optical modes and the second optical mode. Mutual alignments of the first, second, third and fourth elements are defined using lithographic alignment marks that facilitate precise alignment between layers formed during processing steps of fabricating the first, second, third and fourth elements.
    Type: Application
    Filed: June 28, 2022
    Publication date: December 28, 2023
    Inventors: Chong Zhang, Minh Tran, Tin Komljenovic
  • Publication number: 20230400634
    Abstract: A device comprises first, second and third elements fabricated on a common substrate. The first element comprises an active waveguide structure comprising: a first portion supporting a first optical mode. The second element comprises a passive waveguide structure supporting a second optical mode. The third element, at least partly butt-coupled to the second portion, comprises an intermediate waveguide structure supporting intermediate optical modes. At least part of the second element is non-linear, supporting frequency conversion. A tapered waveguide structure in at least one of the second and third elements facilitates efficient adiabatic transformation between the first optical mode and one intermediate optical mode. No adiabatic transformation occurs between any intermediate optical mode and the first optical mode. Mutual alignments of the elements are defined using lithographic alignment marks.
    Type: Application
    Filed: June 13, 2022
    Publication date: December 14, 2023
    Inventors: Minh Tran, Tin Komljenovic
  • Publication number: 20230361534
    Abstract: A device comprises first, second, third and fourth elements fabricated on a common substrate. The first element comprises an active waveguide structure supporting a first optical mode, the second element comprises a passive waveguide structure supporting a second optical mode, the third element, at least partly butt-coupled to the first element, comprises an intermediate waveguide structure supporting intermediate optical modes, and a fourth element comprising TCO material that is attached to the first element. If the first optical mode differs from the second optical mode by more than a predetermined amount, a tapered waveguide structure in at least one of the second and third elements facilitates efficient adiabatic transformation. No adiabatic transformation occurs between any of the intermediate optical modes and the first optical mode. Mutual alignments of the first, the second, the third, and the fourth elements are defined using lithographic alignment marks.
    Type: Application
    Filed: May 6, 2022
    Publication date: November 9, 2023
    Applicant: Nexus Photonics, Inc.
    Inventors: Chong ZHANG, Minh TRAN, Tin KOMLJENOVIC
  • Patent number: 11808997
    Abstract: A device comprises first, second and third elements fabricated on a common substrate. The first element comprises an active waveguide structure comprising electrically pumped optical source supporting a first optical mode. The second element comprises a passive waveguide structure supporting a second optical mode in at least part of the second element. The third element, at least partly butt-coupled to the first element, comprises an intermediate waveguide structure supporting intermediate optical modes. At least part of the second element supports at least one optical mode that interacts with rare-earth dopants. A tapered waveguide structure in at least one of the second and the third elements facilitates efficient adiabatic transformation between the second optical mode and at least one of the intermediate optical modes. No adiabatic transformation occurs between any of the intermediate optical modes and the first optical mode.
    Type: Grant
    Filed: September 19, 2022
    Date of Patent: November 7, 2023
    Assignee: Nexus Photonics Inc.
    Inventors: Minh Tran, Tin Komljenovic, Chong Zhang
  • Publication number: 20230352908
    Abstract: A device comprises first, second and third elements fabricated on a common substrate. The first element comprises an active waveguide structure supporting a first optical mode and at least one of the modal gain control structures. The second element comprises a passive waveguide structure supporting a second optical mode. The third element, at least partly butt-coupled to the first element, comprises an intermediate waveguide structure supporting intermediate optical modes. If the first optical mode differs from the second optical mode by more than a predetermined amount, a tapered waveguide structure in at least one of the second and third elements facilitate efficient adiabatic transformation between the second optical mode and one of the intermediate optical modes. No adiabatic transformation occurs between any of the intermediate optical modes and the first optical mode. Mutual alignments of the first, second and third elements are defined using lithographic alignment marks.
    Type: Application
    Filed: April 28, 2022
    Publication date: November 2, 2023
    Applicant: Nexus Photonics, Inc.
    Inventors: Tin KOMLJENOVIC, Chong ZHANG, Minh TRAN
  • Publication number: 20230266532
    Abstract: A device includes three elements fabricated on a common substrate. The first element includes an active waveguide structure having at least three sub-layers supporting a first optical mode. The second element has a passive waveguide structure supporting a second optical mode, and the third element, butt-coupled to the first element, has an intermediate waveguide structure supporting intermediate optical modes. One sub-layer in the active waveguide structure includes an n-contact layer, another sub-layer includes a p-contact layer, and a third sub-layer includes an active region. A tapered waveguide structure in at least one of the second and third elements facilitates efficient adiabatic transformation between the second optical mode and an intermediate optical mode. No adiabatic transformation occurs between that intermediate optical mode and the first optical mode.
    Type: Application
    Filed: February 18, 2022
    Publication date: August 24, 2023
    Inventors: Chong Zhang, Minh Tran, Tin Komljenovic, Hyun Dai Park
  • Patent number: 11719883
    Abstract: A device includes three elements fabricated on a common substrate. The first element includes an active waveguide structure having at least three sub-layers supporting a first optical mode. The second element has a passive waveguide structure supporting a second optical mode, and the third element, butt-coupled to the first element, has an intermediate waveguide structure supporting intermediate optical modes. One sub-layer in the active waveguide structure includes an n-contact layer, another sub-layer includes a p-contact layer, and a third sub-layer includes an active region. A tapered waveguide structure in at least one of the second and third elements facilitates efficient adiabatic transformation between the second optical mode and an intermediate optical mode. No adiabatic transformation occurs between that intermediate optical mode and the first optical mode.
    Type: Grant
    Filed: February 18, 2022
    Date of Patent: August 8, 2023
    Assignee: Nexus Photonics Inc
    Inventors: Chong Zhang, Minh Tran, Tin Komljenovic, Hyun Dai Park
  • Publication number: 20230244034
    Abstract: A device has a plurality of waveguide structures including two active (one of which comprises two sub-layers), two passive, and three intermediate waveguide structures on a common substrate. At least partial butt coupling between active and intermediate waveguide structures, and tapering in the intermediate and/or passive waveguide structures at each junction therebetween facilitates efficient optical mode transformations as optical signals travel through the device, either from a first sub-layer of the first active waveguide structure through the other sub-layer, then sequentially though a first intermediate waveguide structure, a passive waveguide structure, a second intermediate waveguide structure, a second active waveguide structure, a third intermediate structure, and a second passive waveguide structure; or in reverse from the second passive waveguide structure back through to the first sub-layer of the first active waveguide structure.
    Type: Application
    Filed: January 12, 2022
    Publication date: August 3, 2023
    Inventors: Aditya Malik, Tin Komljenovic, Hyun Dai Park
  • Publication number: 20230072680
    Abstract: A device comprises three elements, realized as photonic integrated circuits. The first element comprises a tunable semiconductor laser emitting light at a laser output wavelength. The second element comprises a wavelength selective element, coupled to the first element. The third element comprises N photodetectors where N>=2, coupled to the second element. Light coupled into the second element from the first element is de-multiplexed by the wavelength selective element such that a ratio of light power coupled from the second element into one of the N photodetectors to light power coupled from the second element into another one of the N photodetectors is a function of the laser output wavelength. The responses of the N photodetectors facilitate at least one of measurement and control of the laser output wavelength.
    Type: Application
    Filed: September 8, 2021
    Publication date: March 9, 2023
    Inventors: Minh Tran, Tin Komljenovic
  • Patent number: 11516457
    Abstract: A switchable fringe pattern illuminator includes an optical path switch configured to receive light and dynamically control an amount of light that is provided to a first waveguide and an amount of light that is provided to a second waveguide. A first projector configured to generate a first fringe pattern using light from the first waveguide. The first fringe pattern illuminates a first portion of a target area. A second projector configured to generate a second fringe pattern using light from the second waveguide. The second fringe pattern illuminates a second portion of a target area. The illuminator may be part of a depth camera assembly (DCA). The DCA is configured to capture images of a portion of the target area. The DCA is further configured to determine depth information for an object in the target area based in part on the captured images.
    Type: Grant
    Filed: June 15, 2021
    Date of Patent: November 29, 2022
    Assignee: Meta Platforms Technologies, LLC
    Inventors: Zihe Gao, Michael Hall, Qing Chao, Zhaoming Zhu, Tin Komljenovic
  • Patent number: 11482837
    Abstract: A PIC has first, second and third elements fabricated on a common substrate. The first element includes a structure supporting efficient coupling of one or more free-space optical modes of incident light into one or more waveguide guided optical modes. The second element includes an on-chip interferometer having an input optically coupled to the waveguide guided optical modes; one or more arms; one or more outputs; and a phase tuner configured to change optical path length in one or more of the arms. The third element includes one or more light detecting structures optically coupled to the one or more outputs of the second element, such that variation in optical power in the one or more outputs is detected, allowing an assessment of coherence characterizing the light incident on the first element of the PIC to be provided.
    Type: Grant
    Filed: April 13, 2021
    Date of Patent: October 25, 2022
    Assignee: Nexus Photonics, Inc
    Inventor: Tin Komljenovic
  • Patent number: 11480734
    Abstract: A device providing efficient transformation between an initial optical mode and a second optical mode includes first, second and third elements fabricated on a common substrate. The first element includes first and second active sub-layers supporting initial and final optical modes with efficient mode transformation therebetween. The second element includes a passive waveguide structure supporting a second optical mode. The third element, at least partly butt-coupled to the first element, includes an intermediate waveguide structure supporting an intermediate optical mode. If the final optical mode differs from the second optical mode by more than a predetermined amount, a tapered waveguide structure in the second or third elements facilitates efficient transformation between the intermediate optical mode and the second optical mode. Precise alignment of sub-elements formed in one of the elements, relative to sub-elements formed in another one of the elements, is defined using lithographic alignment marks.
    Type: Grant
    Filed: October 11, 2019
    Date of Patent: October 25, 2022
    Assignee: Nexus Photonics, Inc
    Inventors: Hyundai Park, Tin Komljenovic, Chong Zhang, Minh Tran
  • Publication number: 20220299309
    Abstract: A radio frequency generator has first and second lasers configured to emit first and second optical outputs; a reference module configured to receive at least part of the first and second optical outputs from the first and second lasers; a control module connected to the first and second lasers and to the reference module; and an optical-to-electrical (O/E) converter configured to process optical signals, originating from the first and second single-frequency lasers, to provide a radio frequency output. Another radio frequency generator has a control module; and a reference module connected to the control module. The reference module includes a photonic integrated circuit (PIC) having first and second single-frequency lasers configured to emit first and second optical outputs; an unbalanced Mach-Zehnder interferometer (UMZI) with first and second 3×3 optical splitter/combiners; first and second peripheral splitter/combiners; and an output splitter/combiner.
    Type: Application
    Filed: February 21, 2022
    Publication date: September 22, 2022
    Inventors: Tin Komljenovic, Minh Tran
  • Patent number: 11353661
    Abstract: A device includes a module comprising an arrayed waveguide grating (AWG), and a filter having a filter input port, a filter output port, and a filter COMM output port. The filter is operable such that a first range of wavelengths entering the filter at the filter input port is directed to the filter output port and a second range of wavelengths entering the filter at the filter input port is directed to the COMM output port. The AWG includes an AWG input port optically coupled to the filter output port to receive the first range of wavelengths, and a plurality of AWG output ports.
    Type: Grant
    Filed: January 13, 2021
    Date of Patent: June 7, 2022
    Assignee: Nexus Photonics LLC
    Inventor: Tin Komljenovic
  • Publication number: 20220120970
    Abstract: An optical device comprises first, second and third elements fabricated on a common substrate. The first element comprises an active waveguide structure supporting a first optical mode, the second element, fabricated on a planarized top surface of the first element, comprises a passive waveguide structure supporting a second optical mode, and the third element, at least partly butt-coupled to the first element, comprises an intermediate waveguide structure, positioned such that a top surface of the intermediate structure underlies a bottom surface of the passive waveguide structure. If the first optical mode differs from the second optical mode by more than a predetermined amount, a tapered waveguide structure in at least one of the second and third elements facilitates efficient adiabatic transformation between the first optical mode and the second optical mode. Mutual alignments of the first, second and third elements are defined using lithographic alignment marks.
    Type: Application
    Filed: October 23, 2020
    Publication date: April 21, 2022
    Inventors: Chong Zhang, Hyun Dai Park, Minh Tran, Tin Komljenovic
  • Patent number: 11287573
    Abstract: An optical device comprises first, second and third elements fabricated on a common substrate. The first element comprises an active waveguide structure supporting a first optical mode, the second element, fabricated on a planarized top surface of the first element, comprises a passive waveguide structure supporting a second optical mode, and the third element, at least partly butt-coupled to the first element, comprises an intermediate waveguide structure, positioned such that a top surface of the intermediate structure underlies a bottom surface of the passive waveguide structure. If the first optical mode differs from the second optical mode by more than a predetermined amount, a tapered waveguide structure in at least one of the second and third elements facilitates efficient adiabatic transformation between the first optical mode and the second optical mode. Mutual alignments of the first, second and third elements are defined using lithographic alignment marks.
    Type: Grant
    Filed: October 23, 2020
    Date of Patent: March 29, 2022
    Assignee: Nexus Photonics LLC
    Inventors: Chong Zhang, Hyun Dai Park, Minh Tran, Tin Komljenovic
  • Patent number: 11209592
    Abstract: A device comprises first, second and third elements fabricated on a common substrate. The first element comprises an active waveguide structure comprising: one portion, of effective cross-sectional area A1, supporting a first optical mode; and a second portion, butt-coupled to the first portion, of effective cross-sectional area A2>A1. The second element comprises a passive waveguide structure supporting a second optical mode. The third element, at least partly butt-coupled to the second portion, comprises an intermediate waveguide structure supporting intermediate optical modes. If the first optical mode differs from the second optical mode by more than a predetermined amount, a tapered waveguide structure in at least one of the second and third elements facilitates efficient adiabatic transformation between the first optical mode and one intermediate optical mode. No adiabatic transformation occurs between any intermediate optical mode and the first optical mode.
    Type: Grant
    Filed: September 9, 2020
    Date of Patent: December 28, 2021
    Assignee: Nexus Photonics LLC
    Inventors: Chong Zhang, Hyun Dai Park, Minh Tran, Tin Komljenovic
  • Publication number: 20210373235
    Abstract: A device comprises first, second and third elements fabricated on a common substrate. The first element comprises an active waveguide structure comprising: one portion, of effective cross-sectional area A1, supporting a first optical mode; and a second portion, butt-coupled to the first portion, of effective cross-sectional area A2>A1. The second element comprises a passive waveguide structure supporting a second optical mode. The third element, at least partly butt-coupled to the second portion, comprises an intermediate waveguide structure supporting intermediate optical modes. If the first optical mode differs from the second optical mode by more than a predetermined amount, a tapered waveguide structure in at least one of the second and third elements facilitates efficient adiabatic transformation between the first optical mode and one intermediate optical mode. No adiabatic transformation occurs between any intermediate optical mode and the first optical mode.
    Type: Application
    Filed: September 9, 2020
    Publication date: December 2, 2021
    Inventors: Chong Zhang, Hyun Dai Park, Minh Tran, Tin Komljenovic
  • Publication number: 20210344170
    Abstract: A PIC has first, second and third elements fabricated on a common substrate. The first element includes a structure supporting efficient coupling of one or more free-space optical modes of incident light into one or more waveguide guided optical modes. The second element includes an on-chip interferometer having an input optically coupled to the waveguide guided optical modes; one or more arms; one or more outputs; and a phase tuner configured to change optical path length in one or more of the arms. The third element includes one or more light detecting structures optically coupled to the one or more outputs of the second element, such that variation in optical power in the one or more outputs is detected, allowing an assessment of coherence characterizing the light incident on the first element of the PIC to be provided.
    Type: Application
    Filed: April 13, 2021
    Publication date: November 4, 2021
    Inventor: Tin Komljenovic