Patents by Inventor Tin-Tack Peter Cheung

Tin-Tack Peter Cheung has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20080300436
    Abstract: A method for producing a selective hydrogenation catalyst for hydrogenating a highly unsaturated hydrocarbon to an unsaturated hydrocarbon comprising contacting an inorganic catalyst support with a chlorine-containing compound to form a chlorided catalyst support and adding palladium to the chlorided catalyst support to form a supported-palladium composition. A selective hydrogenation catalyst for hydrogenating a highly unsaturated hydrocarbon to an unsaturated hydrocarbon formed by the method comprising contacting an inorganic catalyst support with a chlorine-containing compound to form a chlorided catalyst support and adding palladium to the chlorided catalyst support to form a supported-palladium composition.
    Type: Application
    Filed: August 14, 2008
    Publication date: December 4, 2008
    Applicant: Chevron Phillips Chemical Company LP
    Inventors: Tin-Tack Peter Cheung, Joseph Bergmeister, III, Zongxuan Hong
  • Patent number: 7419606
    Abstract: A process for removing selenium from an aqueous stream using a supported sulfur material, and optionally the addition of an activating agent for enhanced removal of selenite, is disclosed.
    Type: Grant
    Filed: December 15, 2006
    Date of Patent: September 2, 2008
    Assignee: ConocoPhillips Company
    Inventors: Marvin Johnson, Charles J. Lord, III, Larry E. Reed, Kenneth C. McCarley, Glenn W. Dodwell, Tin Tack Peter Cheung, John Cruze, Richard Anderson
  • Patent number: 7417007
    Abstract: A method for producing a selective hydrogenation catalyst for hydrogenating a highly unsaturated hydrocarbon to an unsaturated hydrocarbon comprising contacting an inorganic catalyst support with a chlorine-containing compound to form a chlorided catalyst support and adding palladium to the chlorided catalyst support to form a supported-palladium composition. A selective hydrogenation catalyst for hydrogenating a highly unsaturated hydrocarbon to an unsaturated hydrocarbon formed by the method comprising contacting an inorganic catalyst support with a chlorine-containing compound to form a chlorided catalyst support and adding palladium to the chlorided catalyst support to form a supported-palladium composition.
    Type: Grant
    Filed: July 20, 2006
    Date of Patent: August 26, 2008
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Tin-Tack Peter Cheung, Joseph Bergmeister, III, Zongxuan Hong
  • Publication number: 20080142446
    Abstract: A process for removing selenium from an aqueous stream using a supported sulfur material, and optionally the addition of an activating agent for enhanced removal of selenite, is disclosed.
    Type: Application
    Filed: December 15, 2006
    Publication date: June 19, 2008
    Inventors: Marvin Johnson, Charles J. Lord, Larry E. Reed, Kenneth C. McCarley, Glenn W. Dodwell, Tin Tack Peter Cheung, John Cruze, Richard Anderson
  • Patent number: 7247760
    Abstract: A catalyst composition comprising palladium, silver and a support material (preferably alumina) is contacted with a liquid composition comprising an iodide component such as ammonium iodide, and the catalyst is then calcined. An improved process for hydrogenation, especially selectively hydrogenating acetylene (to ethylene), using this improved catalyst composition with improved conversion and deactivation.
    Type: Grant
    Filed: June 9, 2003
    Date of Patent: July 24, 2007
    Assignee: Chevron Phillips Chemical Company
    Inventors: Tin-Tack Peter Cheung, Joseph J. Bergmeister, III
  • Patent number: 7199076
    Abstract: In an embodiment, a method of hydrogenating a highly unsaturated hydrocarbon to an unsaturated hydrocarbon includes contacting the highly unsaturated hydrocarbon with a catalyst in the presence of hydrogen. The catalyst comprises palladium and an inorganic support having a surface area of from about 4.5 to about 20 m2/g, or alternatively 5 to 14.5 m2/g. The inorganic support may comprise ?-alumina treated with a fluoride source. The palladium may be primarily disposed near the surface of the support. In addition, the catalyst may comprise silver distributed throughout the support. In another embodiment, a method of making the foregoing selective hydrogenation catalyst includes contacting a fluorine-containing compound with an inorganic support, heating the support, and adding palladium to the inorganic support. After adding palladium to the support, the support can then be heated again, followed by adding silver to and then heating the support once again.
    Type: Grant
    Filed: December 19, 2003
    Date of Patent: April 3, 2007
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Joseph Bergmeister, III, Tin-Tack Peter Cheung
  • Patent number: 7141709
    Abstract: In some embodiments, methods of producing monoolefins include contacting an olefin stream with a polar solvent to extract a highly unsaturated hydrocarbon from the olefin stream, followed by contacting the polar solvent with a hydrogenation catalyst in the presence of hydrogen at conditions effective to hydrogenate the highly unsaturated hydrocarbon to a monoolefin. The monoolefin then desorbs from the polar solvent and enters the purified olefin stream, allowing the polar solvent to be recycled. In other embodiments, monoolefin production systems include an extraction-hydrogenation zone for performing the extraction and hydrogenating steps in situ. In alternative embodiments, the hydrogenation zone is disposed downstream from the extraction zone.
    Type: Grant
    Filed: November 13, 2003
    Date of Patent: November 28, 2006
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Tin-Tack Peter Cheung, Marvin M. Johnson
  • Patent number: 7038096
    Abstract: A process of treating a catalyst composition containing palladium, an inorganic support, and a catalyst component, such as silver and/or a modifier such as alkali metal fluoride, is provided. The process involves contacting a catalyst composition with a first treating agent comprising carbon monoxide under a first treating condition to provide a treated catalyst composition. As an option, such treated catalyst composition can then be contacted with a second treating agent comprising a hydrogen-containing fluid under a second treating condition. The treated catalyst composition can be used in a selective hydrogenation process in which highly unsaturated hydrocarbons such as diolefins and/or alkynes are contacted with such treated catalyst composition in the presence of hydrogen to produce less unsaturated hydrocarbons such as monoolefins.
    Type: Grant
    Filed: April 7, 2004
    Date of Patent: May 2, 2006
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Tin-Tack Peter Cheung, Joseph J. Bergmeister, Marvin M. Johnson
  • Patent number: 7009085
    Abstract: A catalyst composition comprising an inorganic support material, a palladium component, a silver component, and a promoter component having the formula XYFn, wherein X is an alkaline metal, Y is an element selected from the group consisting of antimony, phosphorus, boron, aluminum, gallium, indium, thallium, and arsenic, and n is an integer which makes YFn a monovalent anion. The above-described catalyst is employed as a catalyst in the selective hydrogenation of acetylene. The above-described catalyst is made by incorporating a palladium component, a silver component, and a promoter component into an inorganic support material.
    Type: Grant
    Filed: July 1, 2002
    Date of Patent: March 7, 2006
    Assignee: Phillips Petroleum Company
    Inventor: Tin-Tack Peter Cheung
  • Publication number: 20040248732
    Abstract: A catalyst composition comprising an inorganic support material, a palladium component, a silver component, and a promotor component having the formula XYFn, wherein X is an alkaline metal, Y is an element selected from the group consisting of antimony, phosphorus, boron, aluminum, gallium, indium, thallium, and arsenic, and n is an integer which makes YFn a monovalent anion. The above-described catalyst is employed as a catalyst in the selective hydrogenation of acetylene. The above-described catalyst is made by incorporating a palladium component, a silver component, and a promotor component into an inorganic support material.
    Type: Application
    Filed: December 10, 2002
    Publication date: December 9, 2004
    Applicant: Phillips Petroleum Company
    Inventor: Tin-Tack Peter Cheung
  • Publication number: 20040192984
    Abstract: A process of treating a catalyst composition containing palladium, an inorganic support, and a catalyst component, such as silver and/or a modifier such as alkali metal fluoride, is provided. The process involves contacting a catalyst composition with a first treating agent comprising carbon monoxide under a first treating condition to provide a treated catalyst composition. As an option, such treated catalyst composition can then be contacted with a second treating agent comprising a hydrogen-containing fluid under a second treating condition. The treated catalyst composition can be used in a selective hydrogenation process in which highly unsaturated hydrocarbons such as diolefins and/or alkynes are contacted with such treated catalyst composition in the presence of hydrogen to produce less unsaturated hydrocarbons such as monoolefins.
    Type: Application
    Filed: April 7, 2004
    Publication date: September 30, 2004
    Inventors: Tin-Tack Peter Cheung, Joseph J. Bergmeister, Marvin M. Johnson
  • Patent number: 6794552
    Abstract: A catalyst composition is provided which can be used for hydrogenating a highly unsaturated hydrocarbon such as an alkyne or a diolefin. The catalyst composition contains palladium, a catalyst component of either silver or an alkali metal compound, or both silver and an alkali metal compound, and a metal aluminate catalyst support. Such metal aluminate catalyst support is prepared by a process of incorporating alumina with a metal component, preferably impregnating alumina with a melted metal component, to thereby provide a metal-incorporated alumina followed by drying and high temperature calcining to thereby provide a metal aluminate catalyst support. The catalyst composition disclosed can be used for hydrogenating a highly unsaturated hydrocarbon to a less unsaturated hydrocarbon. The process involves contacting a highly unsaturated hydrocarbon with a catalyst composition in the presence of hydrogen under a hydrogenation condition sufficient to effect a hydrogenation of the highly unsaturated hydrocarbon.
    Type: Grant
    Filed: December 21, 2001
    Date of Patent: September 21, 2004
    Assignee: Phillips Petroleum Company
    Inventors: Tin-Tack Peter Cheung, Darin B. Tiedtke, Marvin M. Johnson, Gary A. Delzer
  • Patent number: 6737557
    Abstract: A process for recovering DCPD from a hydrocarbon feedstock comprising introducing the hydrocarbon feedstock to a first column, recovering an overhead stream from the first column comprising C9− hydrocarbons, recovering a bottom stream from the first column comprising C10+ hydrocarbons, feeding the bottom stream from the first column to a second column, recovering an overhead stream from the second column comprising DCPD, and recovering a bottom stream from the second column comprising fuel oil, wherein the two columns are sized and operated at defined conditions such as pressures, temperatures, reflux rates, and reboil rates.
    Type: Grant
    Filed: March 8, 2001
    Date of Patent: May 18, 2004
    Assignee: Phillips Petroleum Company
    Inventors: Tin-Tack Peter Cheung, Steven A. Owen, Marvin M. Johnson, Mark E. Lashier
  • Patent number: 6734130
    Abstract: A process of treating a catalyst composition containing palladium, an inorganic support, and a catalyst component, such as silver and/or a modifier such as alkali metal fluoride, is provided. The process involves contacting a catalyst composition with a first treating agent comprising carbon monoxide under a first treating condition to provide a treated catalyst composition. As an option, such treated catalyst composition can then be contacted with a second treating agent comprising a hydrogen-containing fluid under a second treating condition. The treated catalyst composition can be used in a selective hydrogenation process in which highly unsaturated hydrocarbons such as diolefins and/or alkynes are contacted with such treated catalyst composition in the presence of hydrogen to produce less unsaturated hydrocarbons such as monoolefins.
    Type: Grant
    Filed: September 7, 2001
    Date of Patent: May 11, 2004
    Assignee: Chvron Phillips Chemical Company LP
    Inventors: Tin-Tack Peter Cheung, Joseph J. Bergmeister, Marvin M. Johnson
  • Publication number: 20040049093
    Abstract: A hydrocarbon feedstock containing C5 olefins, C5 diolefins, CPD, DCPD, and aromatics is processed by the steps of heating a hydrocarbon feedstock containing CPD, DCPD, C5 diolefins, benzene, toluene, and xylene in a heating zone, to dimerize CPD to DCPD, thereby forming a first effluent; separating the first effluent into a C6+ stream and a C5 diolefin stream; separating the C6+ stream into a C6-C9 stream and a C10+ stream; separating the C10+ stream into a fuel oil stream and a DCPD stream; and hydrotreating the C6-C9 stream to thereby form a BTX stream.
    Type: Application
    Filed: March 8, 2001
    Publication date: March 11, 2004
    Applicant: Phillips Petroleum Company
    Inventors: Tin-Tack Peter Cheung, Steven A. Owen, Marvin M. Johnson, Mark E. Lashier
  • Publication number: 20040024272
    Abstract: A catalyst composition comprising palladium, silver and a support material (preferably alumina) is contacted with a liquid composition comprising an iodide component such as ammonium iodide, and the catalyst is then calcined. An improved process for hydrogenation, especially selectively hydrogenating acetylene (to ethylene), using this improved catalyst composition with improved conversion and deactivation.
    Type: Application
    Filed: June 9, 2003
    Publication date: February 5, 2004
    Applicant: Chevron Phillips Chemical Company
    Inventors: Tin-Tack Peter Cheung, Joseph J. Bergmeister
  • Publication number: 20030055302
    Abstract: A process of treating a catalyst composition containing palladium, an inorganic support, and a catalyst component, such as silver and/or a modifier such as alkali metal fluoride, is provided. The process involves contacting a catalyst composition with a first treating agent comprising carbon monoxide under a first treating condition to provide a treated catalyst composition. As an option, such treated catalyst composition can then be contacted with a second treating agent comprising a hydrogen-containing fluid under a second treating condition. The treated catalyst composition can be used in a selective hydrogenation process in which highly unsaturated hydrocarbons such as diolefins and/or alkynes are contacted with such treated catalyst composition in the presence of hydrogen to produce less unsaturated hydrocarbons such as monoolefins.
    Type: Application
    Filed: September 7, 2001
    Publication date: March 20, 2003
    Inventors: Tin-Tack Peter Cheung, Joseph J. Bergmeister, Marvin M. Johnson
  • Patent number: 6491887
    Abstract: A solid combination of elemental sulfur and an inorganic support material prepared in an inert atmosphere to provide a composition for absorbing trialkyl arsines. The composition prepared thereby and the method for absorbing trialkyl arsines using the composition.
    Type: Grant
    Filed: June 13, 2000
    Date of Patent: December 10, 2002
    Assignee: Phillips Petroleum Company
    Inventors: Tin-Tack Peter Cheung, Donald H. Kubicek, David E. Legg
  • Patent number: 6465391
    Abstract: A catalyst composition comprising an inorganic support material, a palladium component, a silver component, and a promoter component having the formula XYFn, wherein X is an alkaline metal, Y is an element selected from the group consisting of antimony, phosphorus, boron, aluminum, gallium, indium, thallium, and arsenic, and n is an integer which makes YFn a monovalent anion. The catalyst is employed in the selective hydrogenation of acetylene. The catalyst is made by incorporating a palladium component, a silver component, and a promoter component into an inorganic support material.
    Type: Grant
    Filed: August 22, 2000
    Date of Patent: October 15, 2002
    Assignee: Phillips Petroleum Company
    Inventors: Tin-Tack Peter Cheung, Marvin M. Johnson
  • Publication number: 20020107424
    Abstract: A catalyst composition is provided which can be used for hydrogenating a highly unsaturated hydrocarbon such as an alkyne or a diolefin. The catalyst composition contains palladium, a catalyst component of either silver or an alkali metal compound, or both silver and an alkali metal compound, and a metal aluminate catalyst support. Such metal aluminate catalyst support is prepared by a process of incorporating alumina with a metal component, preferably impregnating alumina with a melted metal component, to thereby provide a metal-incorporated alumina followed by drying and high temperature calcining to thereby provide a metal aluminate catalyst support. The catalyst composition disclosed can be used for hydrogenating a highly unsaturated hydrocarbon to a less unsaturated hydrocarbon. The process involves contacting a highly unsaturated hydrocarbon with a catalyst composition in the presence of hydrogen under a hydrogenation condition sufficient to effect a hydrogenation of the highly unsaturated hydrocarbon.
    Type: Application
    Filed: December 21, 2001
    Publication date: August 8, 2002
    Inventors: Tin-Tack Peter Cheung, Darin B. Tiedtke, Marvin M. Johnson, Gary A. Delzer