Patents by Inventor Tindaro Ioppolo

Tindaro Ioppolo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8743372
    Abstract: A whispering-gallery-mode-based seismometer provides for receiving laser light into an optical fiber, operatively coupling the laser light from the optical fiber into a whispering-gallery-mode-based optical resonator, operatively coupling a spring of a spring-mass assembly to a housing structure; and locating the whispering-gallery-mode-based optical resonator between the spring-mass assembly and the housing structure so as to provide for compressing the whispering-gallery-mode-based optical resonator between the spring-mass assembly and the housing structure responsive to a dynamic compression force from the spring-mass assembly responsive to a motion of the housing structure relative to an inertial frame of reference.
    Type: Grant
    Filed: September 6, 2011
    Date of Patent: June 3, 2014
    Assignees: Michigan Aerospace Corporation, Southern Methodist University
    Inventors: Dominique Claire Fourguette, M. Volkan Otugen, Liane Marie Larocque, Greg Alan Ritter, Jason Jeffrey Meeusen, Tindaro Ioppolo
  • Patent number: 8718416
    Abstract: A novel micro-optical electric field sensor exploits morphology-dependent shifts of the optical modes of dielectric cavities to measure temporally- and spatially-resolved of electric field with extremely high sensitivity. The measurement principle is based on the electrostriction effect on the optical modes of dielectric micro-resonators (or micro-cavities) and exploits recent developments in optical fiber and switching technologies. The optical modes are commonly referred to as “whispering gallery modes” (WGM) or “morphology dependent resonances” (MDR). By monitoring the WGM shifts, the electric field causing the electrostriction effect can be determined. Different sensitivities and measurement ranges (maximum measured electric field) can be obtained by using different cavity geometries (for example solid or hollow spheres), polymeric materials (PMMA, PDMS, etc) as well as poling the dielectric material.
    Type: Grant
    Filed: November 3, 2010
    Date of Patent: May 6, 2014
    Assignee: Southern Methodist University
    Inventors: Tindaro Ioppolo, Volkan Otugen, Ulas Ayaz
  • Publication number: 20120056072
    Abstract: A whispering-gallery-mode-based seismometer provides for receiving laser light into an optical fiber, operatively coupling the laser light from the optical fiber into a whispering-gallery-mode-based optical resonator, operatively coupling a spring of a spring-mass assembly to a housing structure; and locating the whispering-gallery-mode-based optical resonator between the spring-mass assembly and the housing structure so as to provide for compressing the whispering-gallery-mode-based optical resonator between the spring-mass assembly and the housing structure responsive to a dynamic compression force from the spring-mass assembly responsive to a motion of the housing structure relative to an inertial frame of reference.
    Type: Application
    Filed: September 6, 2011
    Publication date: March 8, 2012
    Inventors: Dominique Claire FOURGUETTE, M. Volkan OTUGEN, Liane Marie LAROCQUE, Greg Alan RITTER, Jason Jeffrey MEEUSEN, Tindaro IOPPOLO
  • Publication number: 20110277540
    Abstract: A novel micro-optical electric field sensor exploits morphology-dependent shifts of the optical modes of dielectric cavities to measure temporally- and spatially-resolved of electric field with extremely high sensitivity. The measurement principle is based on the electrostriction effect on the optical modes of dielectric micro-resonators (or micro-cavities) and exploits recent developments in optical fiber and switching technologies. The optical modes are commonly referred to as “whispering gallery modes” (WGM) or “morphology dependent resonances” (MDR). By monitoring the WGM shifts, the electric field causing the electrostriction effect can be determined. Different sensitivities and measurement ranges (maximum measured electric field) can be obtained by using different cavity geometries (for example solid or hollow spheres), polymeric materials (PMMA, PDMS, etc) as well as poling the dielectric material.
    Type: Application
    Filed: November 3, 2010
    Publication date: November 17, 2011
    Applicant: Southern Methodist University
    Inventors: Tindaro Ioppolo, Volkan Otugen, Ulas Ayaz