Patents by Inventor Ting Chien
Ting Chien has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12293924Abstract: A method of exposing a wafer to a high-tilt angle ion beam and an apparatus for performing the same are disclosed. In an embodiment, a method includes forming a patterned mask layer over a wafer, the patterned mask layer including a patterned mask feature; exposing the wafer to an ion beam, a surface of the wafer being tilted at a tilt angle with respect to the ion beam; and moving the wafer along a scan line with respect to the ion beam, a scan angle being defined between the scan line and an axis perpendicular to an axis of the ion beam, a difference between the tilt angle and the scan angle being less than 50°.Type: GrantFiled: January 17, 2024Date of Patent: May 6, 2025Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.Inventors: Chia-Cheng Chen, Wei-Ting Chien, Liang-Yin Chen, Huicheng Chang, Yee-Chia Yeo
-
Patent number: 12198931Abstract: A method is disclosed that includes performing a directional ion implantation process on a developed resist pattern to reduce roughness. A substrate can be tilted at a tilt angle with respect to the direction of an incoming ion beam. Ions can be directionally implanted at the tilt angle, along sidewall surfaces of the developed resist pattern to trim roughness from the sidewall surfaces. After implanting, the substrate can be rotated along the axis normal to a surface, and ions can then be directionally implanted at the tilt angle along the sidewall surfaces to further trim roughness from the sidewall surfaces of the developed resist pattern. The directional ion implantation process can be performed over a number of iterations, and during each iteration of the directional ion implantation process, the tilt angle can be adjusted so that the tilt angle is different than during previous iterations.Type: GrantFiled: April 14, 2022Date of Patent: January 14, 2025Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.Inventors: Chun-Liang Chen, Wei-Ting Chien, Liang-Yin Chen, Huicheng Chang, Yee-Chia Yeo
-
Publication number: 20250015566Abstract: A vertical-cavity surface-emitting laser array includes a substrate. The VCSEL array also includes an active layer formed between a lower mirror and an upper mirror. The VCSEL array also includes a contact layer formed between the active layer and the substrate. The VCSEL array also includes an isolation trench between the first VCSEL and the second VCSEL of the VCSEL array. The isolation trench extending through the contact layer is filled with a filler.Type: ApplicationFiled: July 6, 2023Publication date: January 9, 2025Inventors: Kai-Jie CHANG, Wan-Ting CHIEN, Yu-Chun CHEN, Chia-Ta CHANG, Jeng-Lin WU
-
Patent number: 12191174Abstract: In an embodiment, a pattern transfer processing chamber includes a pattern transfer processing chamber and a loading area external to the pattern transfer processing chamber. The loading area is configured to transfer a wafer to or from the pattern transfer processing chamber. The loading area comprises a first region including a loadport, a second region including a load-lock between the first region and the pattern transfer processing chamber, and an embedded baking chamber configured to heat a patterned photoresist on the wafer.Type: GrantFiled: April 14, 2022Date of Patent: January 7, 2025Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.Inventors: Chia-Cheng Chen, Chih-Kai Yang, Chun-Liang Chen, Wei-Ting Chien, Liang-Yin Chen, Huicheng Chang, Yee-Chia Yeo
-
Publication number: 20240395871Abstract: In an embodiment, a device includes: a gate structure on a channel region of a substrate; a gate mask on the gate structure, the gate mask including a first dielectric material and an impurity, a concentration of the impurity in the gate mask decreasing in a direction extending from an upper region of the gate mask to a lower region of the gate mask; a gate spacer on sidewalls of the gate mask and the gate structure, the gate spacer including the first dielectric material and the impurity, a concentration of the impurity in the gate spacer decreasing in a direction extending from an upper region of the gate spacer to a lower region of the gate spacer; and a source/drain region adjoining the gate spacer and the channel region.Type: ApplicationFiled: July 31, 2024Publication date: November 28, 2024Inventors: Wei-Ting Chien, Wen-Yen Chen, Li-Ting Wang, Su-Hao Liu, Liang-Yin Chen, Huicheng Chang
-
Publication number: 20240395550Abstract: A method for fabricating a semiconductor device is provided. The method includes coating a photoresist film over a target layer over a semiconductor substrate; performing a lithography process to pattern the photoresist film into a photoresist layer; performing a directional ion bombardment process to the photoresist layer along a direction tilted with respect to a normal direction of the semiconductor substrate, such that a carbon atomic concentration in the photoresist layer is increased; and etching the target layer using the photoresist layer as an etch mask.Type: ApplicationFiled: July 30, 2024Publication date: November 28, 2024Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.Inventors: Yu-Tien SHEN, Chih-Kai YANG, Hsiang-Ming CHANG, Chun-Yen CHANG, Ya-Hui CHANG, Wei-Ting CHIEN, Chia-Cheng CHEN, Liang-Yin CHEN
-
Publication number: 20240395581Abstract: In an embodiment, a pattern transfer processing chamber includes a pattern transfer processing chamber and a loading area external to the pattern transfer processing chamber. The loading area is configured to transfer a wafer to or from the pattern transfer processing chamber. The loading area comprises a first region including a loadport, a second region including a load-lock between the first region and the pattern transfer processing chamber, and an embedded baking chamber configured to heat a patterned photoresist on the wafer.Type: ApplicationFiled: July 31, 2024Publication date: November 28, 2024Inventors: Chia-Cheng Chen, Chih-Kai Yang, Chun-Liang Chen, Wei-Ting Chien, Liang-Yin Chen, Huicheng Chang, Yee-Chia Yeo
-
Patent number: 12154949Abstract: In an embodiment, a device includes: a gate structure on a channel region of a substrate; a gate mask on the gate structure, the gate mask including a first dielectric material and an impurity, a concentration of the impurity in the gate mask decreasing in a direction extending from an upper region of the gate mask to a lower region of the gate mask; a gate spacer on sidewalls of the gate mask and the gate structure, the gate spacer including the first dielectric material and the impurity, a concentration of the impurity in the gate spacer decreasing in a direction extending from an upper region of the gate spacer to a lower region of the gate spacer; and a source/drain region adjoining the gate spacer and the channel region.Type: GrantFiled: May 15, 2023Date of Patent: November 26, 2024Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.Inventors: Wei-Ting Chien, Wen-Yen Chen, Li-Ting Wang, Su-Hao Liu, Liang-Yin Chen, Huicheng Chang
-
Patent number: 12095231Abstract: A vertical cavity surface emitting laser includes an active area, an inner trench, an outer trench, and a first implantation region. The active area includes a first mirror, an active region, a second mirror, and an etch stop layer. The first mirror is formed over a substrate. The active region is formed over the first mirror. The second mirror is formed over the active region. The etch stop layer with an aperture is formed between the active region and the second mirror. The inner trench surrounds the active area in a top view. The outer trench is formed beside the inner trench. The first implantation region is formed below the inner trench.Type: GrantFiled: March 25, 2021Date of Patent: September 17, 2024Assignee: WIN SEMICONDUCTORS CORP.Inventors: Min-Chang Tu, Jiun-Tsuen Lai, Wan-Ting Chien
-
Patent number: 12062709Abstract: A semiconductor device and a method of forming the same are provided. The method includes forming a sacrificial gate structure over an active region. A first spacer layer is formed along sidewalls and a top surface of the sacrificial gate structure. A first protection layer is formed over the first spacer layer. A second spacer layer is formed over the first protection layer. A third spacer layer is formed over the second spacer layer. The sacrificial gate structure is replaced with a replacement gate structure. The second spacer layer is removed to form an air gap between the first protection layer and the third spacer layer.Type: GrantFiled: May 31, 2023Date of Patent: August 13, 2024Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.Inventors: Wei-Ting Chien, Liang-Yin Chen, Yi-Hsiu Liu, Tsung-Lin Lee, Huicheng Chang
-
Patent number: 12027368Abstract: A method for forming a semiconductor device is provided. The method for forming a semiconductor device is provided. The method includes coating a photoresist film over a target layer; performing a lithography process to pattern the photoresist film into a photoresist layer; performing a directional ion bombardment process to the photoresist layer, such that a carbon atomic concentration in the photoresist layer is increased; and etching the target layer using the photoresist layer as an etch mask.Type: GrantFiled: August 9, 2021Date of Patent: July 2, 2024Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.Inventors: Yu-Tien Shen, Chih-Kai Yang, Hsiang-Ming Chang, Chun-Yen Chang, Ya-Hui Chang, Wei-Ting Chien, Chia-Cheng Chen, Liang-Yin Chen
-
Publication number: 20240203749Abstract: A method of exposing a wafer to a high-tilt angle ion beam and an apparatus for performing the same are disclosed. In an embodiment, a method includes forming a patterned mask layer over a wafer, the patterned mask layer including a patterned mask feature; exposing the wafer to an ion beam, a surface of the wafer being tilted at a tilt angle with respect to the ion beam; and moving the wafer along a scan line with respect to the ion beam, a scan angle being defined between the scan line and an axis perpendicular to an axis of the ion beam, a difference between the tilt angle and the scan angle being less than 50°.Type: ApplicationFiled: January 17, 2024Publication date: June 20, 2024Inventors: Chia-Cheng Chen, Wei-Ting Chien, Liang-Yin Chen, Huicheng Chang, Yee-Chia Yeo
-
Patent number: 11921025Abstract: A slurry analysis system (14) for estimating a first characteristic of a slurry (12) having a plurality of particles (18) suspended in a dispersion medium (20) can include a slurry filter (40) that filters the slurry (12); and a control system (26) that estimates the first characteristic of the slurry (12) using a flow rate of a filtrate (50) through the slurry filter (40) and a slurry filtration pressure of the slurry (12).Type: GrantFiled: June 25, 2020Date of Patent: March 5, 2024Assignee: Nikon CorporationInventors: Takashi Nagata, Ting-Chien Teng, Yohei Konishi, Kiyoshi Nozaki
-
Patent number: 11915942Abstract: A method of exposing a wafer to a high-tilt angle ion beam and an apparatus for performing the same are disclosed. In an embodiment, a method includes forming a patterned mask layer over a wafer, the patterned mask layer including a patterned mask feature; exposing the wafer to an ion beam, a surface of the wafer being tilted at a tilt angle with respect to the ion beam; and moving the wafer along a scan line with respect to the ion beam, a scan angle being defined between the scan line and an axis perpendicular to an axis of the ion beam, a difference between the tilt angle and the scan angle being less than 50°.Type: GrantFiled: June 30, 2022Date of Patent: February 27, 2024Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.Inventors: Chia-Cheng Chen, Wei-Ting Chien, Liang-Yin Chen, Huicheng Chang, Yee-Chia Yeo
-
Publication number: 20240047553Abstract: A method of forming a semiconductor device includes: forming semiconductor fin structures over a substrate, where each of the semiconductor fin structures includes a layer stack over a semiconductor fin, the layer stack including alternating layers of a first semiconductor material and a second semiconductor material; forming a capping layer over sidewalls and upper surfaces of the semiconductor fin structures; and forming hybrid fins over isolation regions on opposing sides of the semiconductor fin structures, where forming the hybrid fins includes: forming dielectric fins over the isolation regions; and forming dielectric structures over the dielectric fins, which includes: forming an etch stop layer (ESL) over the dielectric fins; doping the ESL with a dopant; and forming a first dielectric material over the doped ESL.Type: ApplicationFiled: January 5, 2023Publication date: February 8, 2024Inventors: Wei-Ting Chien, Liang-Yin Chen, Yee-Chia Yeo
-
Publication number: 20240047209Abstract: A method includes coating a photoresist film over a target layer; performing a lithography process to pattern the photoresist film into a photoresist layer, wherein the photoresist layer has an opening, and the opening of the photoresist layer at least has a first sidewall, a second sidewall non-parallel with the first sidewall, and a first corner connecting the first and second sidewalls; performing a first directional ion bombardment process to the first corner of the photoresist layer along a first direction, wherein the first direction is non-perpendicular to both the first and second sidewalls of the photoresist when viewed from top; and after the first directional ion bombardment process is complete, patterning the target layer using the photoresist layer as a patterning mask.Type: ApplicationFiled: October 17, 2023Publication date: February 8, 2024Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.Inventors: Yu-Tien SHEN, Chih-Kai YANG, Hsiang-Ming CHANG, Chun-Yen CHANG, Ya-Hui CHANG, Wei-Ting CHIEN, Chia-Cheng CHEN, Liang-Yin CHEN
-
Publication number: 20230386834Abstract: A semiconductor process system includes an ion source configured to bombard with a photoresist structure on a wafer. The semiconductor process system reduces a width of the photoresist structure by bombarding the photoresist structure with ions in multiple distinct ion bombardment steps having different characteristics.Type: ApplicationFiled: August 10, 2023Publication date: November 30, 2023Inventors: Chih-Kai YANG, Yu-Tien SHEN, Hsiang-Ming CHANG, Chun-Yen CHANG, Ya-Hui CHANG, Wei-Ting CHIEN, Chia-Cheng CHEN, Liang-Yin CHEN
-
Publication number: 20230335401Abstract: A method is disclosed that includes performing a directional ion implantation process on a developed resist pattern to reduce roughness. A substrate can be tilted at a tilt angle with respect to the direction of an incoming ion beam. Ions can be directionally implanted at the tilt angle, along sidewall surfaces of the developed resist pattern to trim roughness from the sidewall surfaces. After implanting, the substrate can be rotated along the axis normal to a surface, and ions can then be directionally implanted at the tilt angle along the sidewall surfaces to further trim roughness from the sidewall surfaces of the developed resist pattern. The directional ion implantation process can be performed over a number of iterations, and during each iteration of the directional ion implantation process, the tilt angle can be adjusted so that the tilt angle is different than during previous iterations.Type: ApplicationFiled: April 14, 2022Publication date: October 19, 2023Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Chun-Liang Chen, Wei-Ting Chien, Liang-Yin Chen, Huicheng Chang, Yee-Chia Yeo
-
Publication number: 20230307525Abstract: A semiconductor device and a method of forming the same are provided. The method includes forming a sacrificial gate structure over an active region. A first spacer layer is formed along sidewalls and a top surface of the sacrificial gate structure. A first protection layer is formed over the first spacer layer. A second spacer layer is formed over the first protection layer. A third spacer layer is formed over the second spacer layer. The sacrificial gate structure is replaced with a replacement gate structure. The second spacer layer is removed to form an air gap between the first protection layer and the third spacer layer.Type: ApplicationFiled: May 31, 2023Publication date: September 28, 2023Inventors: Wei-Ting Chien, Liang-Yin Chen, Yi-Hsiu Liu, Tsung-Lin Lee, Huicheng Chang
-
Patent number: 11753914Abstract: A slurry analysis system (14) for estimating a first characteristic of a slurry (12) having a plurality of particles (18) suspended in a dispersion medium (20) can include a flow restriction assembly (40); a sensor assembly (43) that senses a sensed condition of the slurry (12) as it flows through the flow restriction assembly (40); and a control and analysis system (26) that estimates the first characteristic of the slurry (12) based on the sensed condition. Further, the control and analysis system (26) can select a selected clogging behavior using the sensed condition, and estimate the first characteristic based on the selected clogging behavior.Type: GrantFiled: September 24, 2020Date of Patent: September 12, 2023Inventors: Takashi Nagata, Ting-Chien Teng, Kiyoshi Nozaki, Yohei Konishi