Patents by Inventor Ting-Gang CHEN

Ting-Gang CHEN has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11348917
    Abstract: A semiconductor device with isolation structures of different dielectric constants and a method of fabricating the same are disclosed. The semiconductor device includes fin structures with first and second fin portions disposed on first and second device areas on a substrate and first and second pair of gate structures disposed on the first and second fin portions. The second pair of gate structures is electrically isolated from the first pair of gate structures. The semiconductor device further includes a first isolation structure interposed between the first pair of gate structures and a second isolation structure interposed between the second pair of gate structures. The first isolation structure includes a first nitride liner and a first oxide fill layer. The second isolation structure includes a second nitride liner and a second oxide fill layer. The second nitride liner is thicker than the first nitride liner.
    Type: Grant
    Filed: April 30, 2020
    Date of Patent: May 31, 2022
    Inventors: Chieh-Ping Wang, Tai-Chun Huang, Yung-Cheng Lu, Ting-Gang Chen, Chi On Chui
  • Patent number: 11342444
    Abstract: A method includes forming a first and a second dummy gate stack crossing over a semiconductor region, forming an ILD to embed the first and the second dummy gate stacks therein, replacing the first and the second dummy gate stacks with a first and a second replacement gate stack, respectively, performing a first etching process to form a first opening. A portion of the first replacement gate stack and a portion of the second replacement gate stack are removed. The method further includes filling the first opening to form a dielectric isolation region, performing a second etching process to form a second opening, with the ILD being etched, and the dielectric isolation region being exposed to the second opening, forming a contact spacer in the second opening, and filling a contact plug in the second opening. The contact plug is between opposite portions of the contact spacer.
    Type: Grant
    Filed: September 19, 2019
    Date of Patent: May 24, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ting-Gang Chen, Tai-Chun Huang, Ming-Chang Wen, Shu-Yuan Ku, Fu-Kai Yang, Tze-Liang Lee, Yung-Cheng Lu, Yi-Ting Fu
  • Patent number: 11335603
    Abstract: A method for forming a semiconductor device includes: forming a gate structure over a fin, where the fin protrudes above a substrate; forming an opening in the gate structure; forming a first dielectric layer along sidewalls and a bottom of the opening, where the first dielectric layer is non-conformal, where the first dielectric layer has a first thickness proximate to an upper surface of the gate structure distal from the substrate, and has a second thickness proximate to the bottom of the opening, where the first thickness is larger than the second thickness; and forming a second dielectric layer over the first dielectric layer to fill the opening, where the first dielectric layer is formed of a first dielectric material, and the second dielectric layer is formed of a second dielectric material different from the first dielectric material.
    Type: Grant
    Filed: September 17, 2020
    Date of Patent: May 17, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chieh-Ping Wang, Ting-Gang Chen, Bo-Cyuan Lu, Tai-Chun Huang, Chi On Chui
  • Publication number: 20220020865
    Abstract: A method includes forming a semiconductor layer over a substrate; etching a portion of the semiconductor layer to form a first recess and a second recess; forming a first masking layer over the semiconductor layer; performing a first thermal treatment on the first masking layer, the first thermal treatment densifying the first masking layer; etching the first masking layer to expose the first recess; forming a first semiconductor material in the first recess; and removing the first masking layer.
    Type: Application
    Filed: March 10, 2021
    Publication date: January 20, 2022
    Applicants: Taiwan Semiconductor Manufacturing Co., Ltd., Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Wen-Ju Chen, Chung-Ting Ko, Ya-Lan Chang, Ting-Gang Chen, Tai-Chun Huang, Chi On Chui
  • Publication number: 20220013364
    Abstract: An embodiment includes a method including forming an opening in a cut metal gate region of a metal gate structure of a semiconductor device, conformally depositing a first dielectric layer in the opening, conformally depositing a silicon layer over the first dielectric layer, performing an oxidation process on the silicon layer to form a first silicon oxide layer, filling the opening with a second silicon oxide layer, performing a chemical mechanical polishing on the second silicon oxide layer and the first dielectric layer to form a cut metal gate plug, the chemical mechanical polishing exposing the metal gate structure of the semiconductor device, and forming a first contact to a first portion of the metal gate structure and a second contact to a second portion of the metal gate structure, the first portion and the second portion of the metal gate structure being separated by the cut metal gate plug.
    Type: Application
    Filed: July 8, 2020
    Publication date: January 13, 2022
    Inventors: Ya-Lan Chang, Ting-Gang Chen, Tai-Chun Huang, Chi On Chui, Yung-Cheng Lu
  • Publication number: 20210407807
    Abstract: A method for forming a semiconductor device includes: forming a gate structure over a fin, where the fin protrudes above a substrate; forming an opening in the gate structure; forming a first dielectric layer along sidewalls and a bottom of the opening, where the first dielectric layer is non-conformal, where the first dielectric layer has a first thickness proximate to an upper surface of the gate structure distal from the substrate, and has a second thickness proximate to the bottom of the opening, where the first thickness is larger than the second thickness; and forming a second dielectric layer over the first dielectric layer to fill the opening, where the first dielectric layer is formed of a first dielectric material, and the second dielectric layer is formed of a second dielectric material different from the first dielectric material.
    Type: Application
    Filed: September 17, 2020
    Publication date: December 30, 2021
    Inventors: Chieh-Ping Wang, Ting-Gang Chen, Bo-Cyuan Lu, Tai-Chun Huang, Chi On Chui
  • Publication number: 20210343709
    Abstract: A semiconductor device with isolation structures of different dielectric constants and a method of fabricating the same are disclosed. The semiconductor device includes fin structures with first and second fin portions disposed on first and second device areas on a substrate and first and second pair of gate structures disposed on the first and second fin portions. The second pair of gate structures is electrically isolated from the first pair of gate structures. The semiconductor device further includes a first isolation structure interposed between the first pair of gate structures and a second isolation structure interposed between the second pair of gate structures. The first isolation structure includes a first nitride liner and a first oxide fill layer. The second isolation structure includes a second nitride liner and a second oxide fill layer. The second nitride liner is thicker than the first nitride liner.
    Type: Application
    Filed: April 30, 2020
    Publication date: November 4, 2021
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chieh-Ping WANG, Tai-Chun HUANG, Yung-Cheng LU, Ting-Gang CHEN, Chi On CHUI
  • Publication number: 20210335657
    Abstract: A system and methods of forming a dielectric material within a trench are described herein. In an embodiment of the method, the method includes introducing a first precursor into a trench of a dielectric layer, such that portions of the first precursor react with the dielectric layer and attach on sidewalls of the trench. The method further includes partially etching portions of the first precursor on the sidewalls of the trench to expose upper portions of the sidewalls of the trench. The method further includes introducing a second precursor into the trench, such that portions of the second precursor react with the remaining portions of the first precursor to form the dielectric material at the bottom of the trench.
    Type: Application
    Filed: September 18, 2020
    Publication date: October 28, 2021
    Inventors: Bo-Cyuan Lu, Ting-Gang Chen, Sung-En Lin, Chunyao Wang, Yung-Cheng Lu, Chi On Chui, Tai-Chun Huang, Chieh-Ping Wang
  • Patent number: 11152262
    Abstract: A method includes etching a gate structure to form a trench extending into the gate structure, wherein sidewalls of the trench comprise a metal oxide material, applying a sidewall treatment process to the sidewalls of the trench, wherein the metal oxide material has been removed as a result of applying the sidewall treatment process and filling the trench with a first dielectric material to form a dielectric region, wherein the dielectric region is in contact with the sidewall of the gate structure.
    Type: Grant
    Filed: November 12, 2019
    Date of Patent: October 19, 2021
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chun-Yi Lee, Ting-Gang Chen, Chieh-Ping Wang, Hong-Hsien Ke, Chia-Hui Lin, Tai-Chun Huang
  • Publication number: 20210313181
    Abstract: A gate stack can be etched to form a trench extending through the gate stack, the trench removing a portion of the gate stack to separate the gate stack into a first gate stack portion and a second gate stack portion. A dielectric material is deposited in the trench to form a dielectric region, the dielectric region having an air gap in the dielectric material. The air gap may extend upward from beneath the gate stack to an area interposed between the end of the first gate stack portion and the end of the second gate stack portion. Contacts to the first gate stack portion and contacts to the second gate stack portion may be formed which are electrically isolated from each other by the dielectric material and air gap formed therein.
    Type: Application
    Filed: April 1, 2020
    Publication date: October 7, 2021
    Inventors: Ting-Gang Chen, Wan-Hsien Lin, Chieh-Ping Wang, Tai-Chun Huang, Chi On Chui
  • Patent number: 11107902
    Abstract: A method includes forming a first and a second dummy gate stack crossing over a semiconductor region, forming an ILD to embed the first and the second dummy gate stacks therein, replacing the first and the second dummy gate stacks with a first and a second replacement gate stack, respectively, performing a first etching process to form a first opening. A portion of the first replacement gate stack and a portion of the second replacement gate stack are removed. The method further includes filling the first opening to form a dielectric isolation region, performing a second etching process to form a second opening, with the ILD being etched, and the dielectric isolation region being exposed to the second opening, forming a contact spacer in the second opening, and filling a contact plug in the second opening. The contact plug is between opposite portions of the contact spacer.
    Type: Grant
    Filed: June 25, 2018
    Date of Patent: August 31, 2021
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ting-Gang Chen, Tai-Chun Huang, Yi-Ting Fu, Ming-Chang Wen, Shu-Yuan Ku, Fu-Kai Yang, Tze-Liang Lee, Yung-Cheng Lu
  • Publication number: 20200176259
    Abstract: A method includes etching a gate structure to form a trench extending into the gate structure, wherein sidewalls of the trench comprise a metal oxide material, applying a sidewall treatment process to the sidewalls of the trench, wherein the metal oxide material has been removed as a result of applying the sidewall treatment process and filling the trench with a first dielectric material to form a dielectric region, wherein the dielectric region is in contact with the sidewall of the gate structure.
    Type: Application
    Filed: November 12, 2019
    Publication date: June 4, 2020
    Inventors: Chun-Yi Lee, Ting-Gang Chen, Chieh-Ping Wang, Hong-Hsien Ke, Chia-Hui Lin, Tai-Chun Huang
  • Publication number: 20200123656
    Abstract: A system and method for plasma enhanced deposition processes. An exemplary semiconductor manufacturing system includes a susceptor configured to hold a semiconductor wafer and a sector disposed above the susceptor. The sector includes a first plate and an overlying second plate, operable to form a plasma there between. The first plate includes a plurality of holes extending through the first plate, which vary in at least one of diameter and density from a first region of the first plate to a second region of the first plate.
    Type: Application
    Filed: December 20, 2019
    Publication date: April 23, 2020
    Inventors: Kun-Mo LIN, Yi-Hung LIN, Jr-Hung LI, Tze-Liang LEE, Ting-Gang CHEN, Chung-Ting KO
  • Publication number: 20200013875
    Abstract: A method includes forming a first and a second dummy gate stack crossing over a semiconductor region, forming an ILD to embed the first and the second dummy gate stacks therein, replacing the first and the second dummy gate stacks with a first and a second replacement gate stack, respectively, performing a first etching process to form a first opening. A portion of the first replacement gate stack and a portion of the second replacement gate stack are removed. The method further includes filling the first opening to form a dielectric isolation region, performing a second etching process to form a second opening, with the ILD being etched, and the dielectric isolation region being exposed to the second opening, forming a contact spacer in the second opening, and filling a contact plug in the second opening. The contact plug is between opposite portions of the contact spacer.
    Type: Application
    Filed: September 19, 2019
    Publication date: January 9, 2020
    Inventors: Ting-Gang Chen, Tai-Chun Huang, Ming-Chang Wen, Shu-Yuan Ku, Fu-Kai Yang, Tze-Liang Lee, Yung-Cheng Lu, Yi-Ting Fu
  • Patent number: 10519545
    Abstract: A system and method for plasma enhanced deposition processes. An exemplary semiconductor manufacturing system includes a susceptor configured to hold a semiconductor wafer and a sector disposed above the susceptor. The sector includes a first plate and an overlying second plate, operable to form a plasma there between. The first plate includes a plurality of holes extending through the first plate, which vary in at least one of diameter and density from a first region of the first plate to a second region of the first plate.
    Type: Grant
    Filed: May 31, 2016
    Date of Patent: December 31, 2019
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Kun-Mo Lin, Yi-Hung Lin, Jr-Hung Li, Tze-Liang Lee, Ting-Gang Chen, Chung-Ting Ko
  • Publication number: 20190393324
    Abstract: A method includes forming a first and a second dummy gate stack crossing over a semiconductor region, forming an ILD to embed the first and the second dummy gate stacks therein, replacing the first and the second dummy gate stacks with a first and a second replacement gate stack, respectively, performing a first etching process to form a first opening. A portion of the first replacement gate stack and a portion of the second replacement gate stack are removed. The method further includes filling the first opening to form a dielectric isolation region, performing a second etching process to form a second opening, with the ILD being etched, and the dielectric isolation region being exposed to the second opening, forming a contact spacer in the second opening, and filling a contact plug in the second opening. The contact plug is between opposite portions of the contact spacer.
    Type: Application
    Filed: June 25, 2018
    Publication date: December 26, 2019
    Inventors: Ting-Gang Chen, Tai-Chun Huang, Yi-Ting Fu, Ming-Chang Wen, Shu-Yuan Ku, Fu-Kai Yang, Tze-Liang Lee, Yung-Cheng Lu
  • Patent number: 10510867
    Abstract: A method includes forming a dummy gate stack on a substrate, forming a spacer layer on the dummy gate stack, forming an etch stop layer over the spacer layer and the dummy gate stack, the etch stop layer comprising a vertical portion and a horizontal portion, and performing a densification process on the etch stop layer, wherein the horizontal portion is denser than the vertical portion after the densification process The method also includes forming an oxide layer over the etch stop layer, performing an anneal process on the oxide layer and the etch stop layer, wherein the vertical portion has a greater concentration of oxygen than the horizontal portion after the anneal process.
    Type: Grant
    Filed: December 17, 2018
    Date of Patent: December 17, 2019
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Bor Chiuan Hsieh, Chung-Ting Ko, Ting-Gang Chen, Chien Chung Huang, Tai-Chun Huang, Tze-Liang Lee
  • Publication number: 20190140076
    Abstract: A method includes forming a dummy gate stack on a substrate, forming a spacer layer on the dummy gate stack, forming an etch stop layer over the spacer layer and the dummy gate stack, the etch stop layer comprising a vertical portion and a horizontal portion, and performing a densification process on the etch stop layer, wherein the horizontal portion is denser than the vertical portion after the densification process The method also includes forming an oxide layer over the etch stop layer, performing an anneal process on the oxide layer and the etch stop layer, wherein the vertical portion has a greater concentration of oxygen than the horizontal portion after the anneal process.
    Type: Application
    Filed: December 17, 2018
    Publication date: May 9, 2019
    Inventors: Bor Chiuan Hsieh, Chung-Ting Ko, Ting-Gang Chen, Chien Chung Huang, Tai-Chun Huang, Tze-Liang Lee
  • Patent number: 10157997
    Abstract: A method includes forming a dummy gate stack on a substrate, forming a spacer layer on the dummy gate stack, forming an etch stop layer over the spacer layer and the dummy gate stack, the etch stop layer comprising a vertical portion and a horizontal portion, and performing a densification process on the etch stop layer, wherein the horizontal portion is denser than the vertical portion after the densification process The method also includes forming an oxide layer over the etch stop layer, performing an anneal process on the oxide layer and the etch stop layer, wherein the vertical portion has a greater concentration of oxygen than the horizontal portion after the anneal process.
    Type: Grant
    Filed: August 2, 2017
    Date of Patent: December 18, 2018
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Bor Chiuan Hsieh, Chung-Ting Ko, Ting-Gang Chen, Chien Chung Huang, Tai-Chun Huang, Tze-Liang Lee
  • Publication number: 20180315830
    Abstract: A method includes forming a dummy gate stack on a substrate, forming a spacer layer on the dummy gate stack, forming an etch stop layer over the spacer layer and the dummy gate stack, the etch stop layer comprising a vertical portion and a horizontal portion, and performing a densification process on the etch stop layer, wherein the horizontal portion is denser than the vertical portion after the densification process The method also includes forming an oxide layer over the etch stop layer, performing an anneal process on the oxide layer and the etch stop layer, wherein the vertical portion has a greater concentration of oxygen than the horizontal portion after the anneal process.
    Type: Application
    Filed: August 2, 2017
    Publication date: November 1, 2018
    Inventors: Bor Chiuan Hsieh, Chung-Ting Ko, Ting-Gang Chen, Chien Chung Huang, Tai-Chun Huang, Tze-Liang Lee